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Abstract

This thesis introduces a new calculus for manipulating lincar-program decomposition
schemes. A linear program is represented by a communication network, which is
decomposed by splitting nodes in two, and a transformation is defined to recover
subproblems from the network. We also define a dual-symmetric oracle that provides
solutions to lincar programs, and can be performed by the simplex method, nested
decomposition, and finally, parallel decomposition.

Two important classes of lincar program serve as examples for the above caleulus:
staircase lincar programs and stochastic lincar programs. TFor the former case, a
sophisticated yet experimental computer code has been written for an IBM 3090/60012
with six processors. The code performs the parallel decomposition algorithm and is
tested on twenty-two small to medium sized rcal-worlcl’?ﬁoblcms. Experiments

show that in addition to specdups provided by decomposition alone, performance is
improved by using parallel processors. ( [ % p‘ )
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Notation

Math Symbols

R The ordered set of real numbers.
# The empty set.
Y Mecans “for ail”.
€ Means “is an clement of”,
O Means “contains the set”.
N Intersccticn operation on sats.
U Union operation on sets.
¢ A column vector of ones.
()P The dual form of the linear program in the equation ().
B A binary operator th. ¢ partitions the rows of a lincar program.
@ A binary opc. ator that partitions the columns of a linear program.
O The invers: of the row and column partiticn operators.
1 End of proof.
0 End of example.
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Variables and Index Sets

All variables serve both as vectors in muliidimensional real space and as scts of indices.
“Uhe primal variables index the columne of the matrix A and row vector ¢7, and the
dual variables index the rows of A and the column vector b. The context will make
clear whether a character such as z represents a real value or an index to a columa.

Two types of variable are present in the formulation of a decomposition subprob-
lemi: original variables from the original problem and added variables for the purpose
of appending and modifying the original ones.

‘The primal and dual variables are named with corresponding Roman and Greek
characters. Even the functions of the characters as index sets and variables bear
synmetric interpretutions.

Index only
i,k Row indices.
7,1 Column indices.
o An index for the objective row.

s An index for the right-hand side.

Dual Variable or Row Index

A An added dual variable on new constraints.
v An added dual variable on the objective modification constraint.

Original dual variables.

=

-

¥ An added dual variable on column accounting constraints.
w An added dual variable on the right-hand side modification constraint.

0 An added dual variable on primal convexity constraints.

X




Primal Variable or Column Index

[ An added primal variable to combine new columns.
u An added primal variable to implement a right-hand side modification.
z The original primal variables.
y An added primal variable to account passed primal solutions.
w An added primal variable to account the objective modification.

t An added primal variable on dual convexity constraints.

Variable only
a A non-negative scalar.

= An objective value.

Sets

A A closed polyhedral set representing a primal feasible region (in context).
B A closed polyhedral set representing a dual feasible region.
C A sct containing column indices.
GY The set containing all communication networks with N nodes.
D A set containing dual extreme points.
D A set containing dual 2xtreme rays.
R A set containing row indices.
P A set containing primal extreme points. .

P A set containing primal extreme rays.

Xi




Data Structures

Original Data

A Constraint coelficient matrix.
b Right-hand side vector,

¢ Yector of costs.

Added Data in Real Space

[ An added data structure to contain extra constraints.
X An added data structure to hold extra colunns.

¥ An added data structure for modifying an objective function.
¥ An added data structure for modifying the right-hand side.

0 An added data structure containing the slope of the dual objective function in

a dual extreme ray direction.

¢ An added data structure containing the slope of the primal objective function
in an extreme ray direction.

Added Data in Binary Space

& A binary scalar indicating a dual extreme point in .
d A binary scalar indicating a primal extreme point in §.
% An binary vector indicatling a corresponding dual extreme points in 1.

An binary vector indicating a corresponding primal extieme point in X.

[57]

)

Subproblem interface matrix for arc a containing at most one unit entry per

row and column.
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Subscripts, Superscripts and Accents

‘The subscript n denotes information for node n, while the subscript a denotes infor-
mation for arc a. Various math accents are used on bath primal and dual variables
throughout. The tilde accent, as in Z, indicates a general solution value. The arrow
accent, as in I, indicates an extreme ray solution value. The dot accent, as in z,

indicates an extreme point solution value.
Ai; The tjth clement of the matrix A.
b; The ith element of column vector b.
¢l The jth element of row vector c.
2k ‘The ith clement of the kth primal solution Z, for node n.
x; The jth clement of kth dual solution #, for node n.

I The i7th element of the matrix /,

Dimensilons

p The number of processors (in context).
N The number of subproblems.
K The number of times a given subproblem has been solved.
ro The number of coupling rows between the subproblems connected by arc e.
rn The number of non-zero rows in the column partition of subproblem n.
¢n The number of columns in the partition for subproblem n.
e, The number of non-zero elements in the columu partition of subproblem n.
#n The number of rows in the formulatior of subproblem n.

xiii




& The number of columns in the formulation of subproblem n.
€y The number of non-zcros in the formulation of subproblem n.
N The maximum number of subproblems handled by the code.
p The maximum number of processors handled by the code.

s The maximum number of coupling constraints between adjacent subproblems
that can be handled by the code.

Graph Theory

N The set of nodes in a graph.

n A node in V.

A The set of arcs in a graph (in context).

a An arcin A.

7. The type for arc a (up, down, left, or right).

g A communication graph (when not subscripted).
I An incidence graph.

p A partition graph (in context).

P The set of all partition graphs (in context).

Problems and Solution Methods

NAME/n/p Problem NAME divided into n subproblems and solved using p proces-

sors.

ALG/p Algorithm ALG is run using p processors.

viv



Multiple Meanings

The characters r, ¢, ¢, p, A, and P can have multiple meanings. The first three are
redefined in Chapter Four to refer to row, column and clement dimensiens of LPs. In
Chapter Three, p is introduced as a partition graph, while in Chapter Four it refers
to the number of computer processors applied to solving a test problem. Early in
Chapter One, A refers to a primal feasibie region, while later it is used as the set of
arcs in a communication network. Finally, in Chapter One, P, when accented with
an arrow or dot, is a sct of primal extreme rays or extreme points, but in Chapter
Three, P is used exclusively as the set of all partition graphs in a communication

network.




Chapter 1

Symbolic Decomposition

ESCRIBED herein is a methodology by which Lincar Programs (LPs) can
be decomposed into a collection of interdependent LPs and solved with a
decomposition algorithm on a parallel computer. Equation (1.1) introduces

the notation used throughout for linear program formulations:

min Jr==z

20 (1.1)
st. x: Az 2.
Corresponding to the constraints Az > b are dual variables x. The positioning of
the dual variables to the left in (1.1) defines the correspondence between the slacks
of the primal constraints and the dual variables. An analogous correspondence exists
between the slacks of the dual constraints (reduced costs) and the primal variables.
Two important classes of problem will serve as guinea pigs to be dissected. Their
anatomies are displayed in Figure 1.1. The dissection proceeds as a series of bisections
or slices through the rows and columns of A, corresponding to a series of partitions
of its row and column index sets. In the figure, the gray submatrices are where the
nonzero coefficients are located, and the heavy lines with numerals 1, 2, 3, are the
slices and the order in which they are made. Appendix B contains a collection of such

nonzero coefficient patterns for a number of real-world staircase problems.

1
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CHAPTER 1. SYMBOLIC DECOMPOSITION

1 e
1 2 3 2 3 4
Staircase Two-Stage Stochastic
Linecar Program Linear Program

Figure 1.1: Partitioning variables and constraints.

The Staircase LP in Figure 1.1 has its column index set C partitioned into four
scts by three slices. The first one slices off the leftmost block of nonzeros and the
next two in turn slice off the remaining blocks in the same way. In a different manner,
the row indez set of the Two-Stage Stochastic LP is first partitioned into two sets,
a top and a bottom; then the set associated with the bottom blocks of nonzeros
is partitioned in a fashion similar to that of the Staircase LP. These two classes of
lincar program have many practical applications. There is an extensive literature on
exploiting their special structure in order to develop an cfficient solution algorithin;
for example: [Dan59), [Zad62), [DGDG4), [VS64], {GlaTl], [HoT4], [DGSS].

The title of this thesis, The Parallel Decomposilion of Linear Programs, mecans
ihat these structures and others can be further exploited if the LP’s are solved using
parallel computers. The collection of interdependent LPs (subproblems) resulting
from the decomposition prescribed above can be solved asynchronously on a paral-
lel computer. Recalling that decomposition algorithms are iterative, we will show
that the corresponding subproblems can be solved repeatedly, with information being
passed from one to another until convergence is reached. Moreover, with a parallel
computer we can solve these subproblems simultancously with all processors efficiently

employed, thus obtaining the overall solution more quickly.




‘The main contribution of this thesis involves developing a “symbslic calculus™ for
partitioning lincar programs and demonstrating its uscfulness on practical LP exam-
ples. Finally, we show that a patallel decomposition algorithm can indeed outperform
serial algorithms, by experimenting with a computer code designed to solve staircase
LPs.

Linear Programs Communication Networks
, ( il Y
) . . Inm{o‘zn X -
ncar s weasesiveen : 3 “‘ A

1 Pro -4 ST,
St DL (X))
A o A%

t
Traditional :
Algedra
] Q
1 creemsinstvresd.
|
v Generalized
l.incar < Transform ) N
Program Q
Subproblems (Chapter2)

Figure 1.2: Symbolic Decompositiost covered by Chapter One.

Figure 1.2 outlines the derivation of our symbolic decomposition calculus and its
role in producing a system of subproblems. The left side of the diagram represents the
traditicnal algebraic derivations of subproblem formulations. We propose a transform
to a symbolic space that is based on network theory and we call communication
networks. The symbol GV represents the collection of all such networks on N nodes.
In place of algebra, we define simple operators on the network that effect horizontal
and vertical slices decomposition in ever more complex schemes. Finally, in Chapter 3
we provide a generalized parallel algorithm based on some given network in GV. This

algorithm is a generalization of nested decomposition [Ho74, Abr83) and through




4 CHAPTER 1. SYMBOLIC DECOMPOSITION

experiments on twenty-two staircase-LD test problems we show that decomposition
algorithms can be sped up by parallel computers.

Given a dissection of the anatomy of a particular LP, like those in Figure 1.1,
we can formulate certain well defined subprobiems and a well defined algorithm to
modify and solve the subproblems, thereby arriving at a solution to the eriginal LP.
We call the entire process symbolic decomposition because it is concerned not with
actual data values but with the relationships between them (as necessary to solve
the problem). The symbolic calculus we will describe allows for the possibility, if
desired, of refining a disscction to the point where the individual blocks consist of
single cocflicients of the matrix A. Using this calculus, we can conveniently partition
the blocks of a large-scale LP to exploit many different underlying patterns found in
real-world problems.

Chapter Ornic reviews the theory of decomposition by Goldman, Dantzig and Wolle,
and Benders, and introduces symbolic decomposition. It concludes with a theorem
on subproblem interactions.

Decomposition, as described by Geoffrion, involves cither some kind of restriction
or some kind of relaxation of the original problem [Geo70). Considerable advantage
can be gained when the restriction or relaxation results in a much simpler problem.
This is especially true when the original problem size is so large it would overwhelm
the computer. The full problem can be broken into many smaller ones that can be
solved to obtain an overall solution. This is decomposition.

All LP decomposition algorithms are based on two well kaown theorems. The first
is the Goldman Resolution Theorem [Gol56), which states that a convex polyhedron
can be described as a convex combination of its extreme points (provided such exist)
plus a non-negative combination of its extreme rays (when not bounded). The second
is that the solution of a linear program solved by the simplex method [Dan63] (whether
primal or dual) is always at an extreme point (and/or an extreme ray).

"here are two fundamental methods of decomposing a linear program into a collec-

tion of LP subproblems; the Dantzig-Wolfe method [DW61] and the Benders method
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1.1. GOLDMAN'S RESOLUTION THEOREM

[Ben62). They are the duals of cach ather. Using the former you slice horizontally,

while with the latter you slice vertically.

The horizontal slice of the D-W method partitions the reea indices R into two sets.
We name them top and bottom. From them we generate two D-W subproblems. The
top et corresponds to the traditional D-\WV Master problem, a relaxed version of
(1.1) defined on only the constraints so indexed, while the battom set corresponds
to the D-\V Slave problem. Information is passed up and down between them in the

decomposition algorithm.

The dual method, that of Benders, operates via a partition of the column index
set C into two sets: left and right. The left is used to generate the Master and the

right the Slave.

We offer a caution on notation. The symbols for variables, i.e. z and =, are used
in two ways that arc context sensitive. In some places these symbols denote the values
of primal and dual variables, but in other places they denote index sets for columns
and/or rows of A, b, and c. Their proper interpretation should always be clear from

their use.

1.1 Goldman’s Resolution Theorem

Goldman's Resolution Theorem [Gol56) forms the basis for partially representing
feasible regions of subproblems and generating sets of necessary conditions to describe
them. The conditions are generated from successive solutions of the appropriate

subproblems.

Let the closed polyhedral set A = {z: Az > b, z > 0}, where A is a matrix of
finite dimensions, and let the sets P and P consist of all the extreme points and rays,

respectively, of A, the primal feasible region of (1.1).
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Theorem 1.1 (Goldman) The set A can be czpressed as a conver combination of

ils extreme poinls P plus a non-negalive combination of ils czlreme rays P
A={z=1+af, Vi€ conv(‘f?), ZEP, a 0}.

In addition, the number of cxlreme points and rays will be finite.

‘The finiteness of a decomposition algorithm stems from the fact that the number
of extreme points and extreme rays of the polyhedral seb {z] Az 2 b, = 2 0} is finite.

1.2 Solution Properties of Linear Programs

In order to enhance our geometric intuition of decomposition algorithms, we now
describe the forms of information being passed between subproblems. First, let us
define the sets D and D as the set of aill extreme points and rays, respectively, of the
set B = {z : ATz € ¢,= 2 0}, the dual feasible region of (1.1). The simplex method

and the following three theorems are due to Dantzig [Dan63).

Theorem 1.2 (Optimal Solution) If an optimal solution to (1.1) cxists, the sim-
plex method will gencrute an oplimal primal solution, & € P, and a veclor of oplimal

dual mulliplicrs, # € D. In addition, c'z > b'%, Yz € A, with cqualily at &.

Corollary 1.3 (Separating Hyperplane (1)) The hyperplane {z : ¢’z = 0%}
separales the set A from all points z that could give a lower value to ¢z, where

# € D is a veclor of optimal dual multipliers.

Theorem 1.4 (Unbounded Solution) If the solution lo (1.1) is unbounded, the
simplez method will give an exlreme poini, & € P, and an extreme 1ay, € P, of

A such that (& + af) = —c0 as @ - co. In addition, no feasible vector of dual

mullipliers & ezists, so B is emply.




1.2. SOLUTICN PROPERTIES OF LINEAR PROGRAMS 7

A b
Let A = ( ll) and b = ( b:) be corresponding row partitions. The problem
Az

(1.1) becomes

min dz==z
z20
x: Az 2 b (1.2)

x2: Az 2 b
Define the top set Ay = {z : Az 2 4} and the bottom set A; = {z : Az 2
by, z 2> 0}, where the latter includes the non-negativity constraint. Note that their

intersection is the original feasible region: A = A; N A,.

Theorem 1.5 (Infeasible Solution) If there is no feasible solution for (1.9), the
simplez method will find a vector of dual multipliers (%, %3) € D thal form an cztreme
ray of the polyhedron B = {(x1,%3) : ATx; + Alxy S ¢, (11, %2) 2 0). The ray salisfies
AR + AR £ 0,(71,%2) 20, and b]F, + bJ7, > 0. If we assume that A; # @ then
#FTaz <7 Vz € A,

In the following corollary to Theorem 1.5, the dual ray (#, #;) is identical to that

in the theorem.

Corollary 1.6 (Separating Hyperplane (2)) If bath A, and A; are non-emply,
the hyperplane {z : ®TAx == #]b,} strictly separates the sets A; and Az, as does the
hyperplane {z : ¥ Az = %15, }.

[able 1.1 summarizes the four combinations of primal and dual feasibility, and the
results of the previous three theorems from the classical theory, For each combination,
it lists the forms of the primal and dual solutions, with the primal forms handled
by the simplex method in bold face—feasible optimal, feasible unbounded, and
infeasible. In the primal infeasible cases, the dual ray is obtained at the end of Phase
1. Most algorithms terminate at this point without determining a dual extreme point
when one exists.

Although the simplex method typically stops with szly a dual ray when primal

infeasible, it can yet obtain the non-bold face information. When a problem is known
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Status Solution Form
Primal Primal Dual
and Dual | Extreme | Extreme
Optimal Point Point

Primal Primal
Unbounded | Extreme None
and Dual Point
Infeasible | & Ray

Primal Dual
Infeasible None | Extreme
and Dual Point

Unbounded & Ray

Primal Primal Dual
and Dual | Extreme | Extreme
Infeasible Ray Ray

Table 1.1: Soiutions of a primal formulation.

to be primal infeasible, it is casy to replace its right-hand side by one that makes
it feasible. It wiil then finish either optimal or unbounded. If optimal, we have
the “Primal Infeasible, Dual Feasible” case, and the optimal dual solution is the
needed dual extreme point.  If unbounded, we have the “Primal Infeasible, Dual
Infeasible™ case, and the ray associated with the unbounded solution is the missing
primal extreme ray.

We now introduce the concept of an oracle. The word oracle usually refers to a
magicai sourcc of truth. There is not much magic in our case, merely convenience.
For the purpose of argument, the manner in which the oracle obtains information is
not as important as the fact that it does provide it, and in a specific form. Our oracle

will provide solutions to lincar programs.

Definition 1.7 (An Oracle) When consulled, an oracle O(-) offers a “solution” for

linear programs. In the case of (1.1), the oracle will generate cither:

1. primal end duel oplimal extreme poinls = and % salisfying ¢’z = b7, or

2. a primal eztreme ray £ satisfying ¢’z <0, or
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3. a dual extreme ray ¥ saiisfying b7F > 0.

In cases 2 and 3, we use a weak inequality to cover cases for which there is a ray of

optimal solutions.
Lemma 1.8 The Phase [ / Phase 2 Simplex Method can perform O(1.1).

Proof: Compare the three oracle cases with Table 1.1. ]

This oracle forms the basis for all of the following algorithmic results.

1.3 Dantzig-Wolfe Decomposition

We will now review Dantzig-\Wolfe (D-WV) decomposition [D\VG61] by partitioning the
row index set of (1.2). We present decomposition algorithms as a combination of two

parts: (a) the subproblem formulations, and (b) the protocol for passing information.

1.3.1 The D-W Subproblems

In a D-\V decomposition scheme, let .i’.; € P> UP; be an extreme point or extreme
ray of Ay = {z: A3z 2 by, z 2 0}. Let §; = 1 in the case of the former, and let
g, = 0 in the latter. Let all such vectors X,; form the columns of a matrix X. Then

by Goldman’s Theorem, any point z € A, can be represented by
=X, 1>0
= (1.3)
1 =31,
for some choice of variables I. The choice of  is not necessarily unique. Substituting
the constraints on z from (1.3) for those corresponding to the region A; in (1.2), we

obtain the “Master” problem of the D-\V decomposition scheme:

min Tz =z
120,z
st. 0: g1l =1

(1.4)

B Xl-Iz=0
3 B Alzzb;.
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This system is of course equivalent to solving (1.2). On the surface it would appear
that this transformation was made at the expense of greatly increasing the number
of variables by including I. Suppose, however, that the oracle is consulted on a
formulation of (1.1) where the columns of X' contain only a subset of the extreme
points and rays of Aj. Let us assume that the oracle returns primal and dual extreme
points (I Z)and (§ ¢ #). We know that # must be in both A; and A;, and that
057+ HT.N < 0. If our present collection of extreme points and rays in .V is sufficiens
to obtain a solution to (1.2), there can be no = € A such that 8 + %z > 0. This
can be determined by solving the “Slave” problem of the D-\V decomposition scheme
with (¢ & 8)=(¢ 1 0),defined as follows:

min S = 2,

220, ur - - -

st v Yrtdw > =0 (1.5)
X720 Ag: 2 b_i.

The motivation for this problem is to answer the question:
Is there a point x € A; such that 0 + 7z > 0?

For a dual feasible solution to (1.5) v will equal 1, meaning that its corresponding
coustraint is binding. In which case, w = ="z — 0 and we are minimizing w over all
z G A;. Therefore, if =2 > 0, there can be nw z € A, such that 0 + t,Z'T:C > 0, and in
answer to the above question: there is no such point. Further, there are no extreme
points or rays of A; which if added to our present collection in .¥ could improve the
overall solution. We have a solution to (1.1).

In (1.5), (1,5,3, 5) is an oracle-provided extreme point or extreme ray of the dual
feasible region of (1.4) for some (P2, Py). If it is a dual extreme point, (1,8,0) =
(1,’.:,1,0), and if it is a dual extreme ray, (9, 5, 0) = (11;,0,5).

When § equals zero in the extreme ray case, (1.5) will have a vacuous objective
and becomes a feasibility problem. We need only find a feasible point to solve it. The

next section details the D-W method of solution, in which we will see that having
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§ = 0 direats the Slave to find points in A; that could make an infeasible Master
icasible.

Nete in the Master that if there are no extreme points among the columns of X
then § = € and (1.4) is infeasible via 0 -1 = 1. To cnsure that A; contains at least
one exireme point we make z non-negative in A; cather than in A,.

Equation (1.4) is commonly referred to as the Master problem because its dual
solutions 1% impact the objective of (1.5), the Slave, to select extreme: information from
the set Az that will lead 1o an overall optimum solution of (1.2). In the following
chapters, the Master/Slave distinction is not sufficient, when the dual of this algorithm
is incorporated. For this reason, ail such LPs will be referred to as subproblems (being
subordinate to the original problem). and furiher, (1.4) will be referred to as the top

subproblem, and (1.5) as the tollom subproblem.

1.3.2 The Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the top subproblem (1.4) is solved with P, and P,
restricted Lo promising subsets of the extreme points and extreme rays of A,. Initially
those subsets are empty and we need to build them up to the point where they are
sufficient for determining the solution to the original problem (1.2). On each major
iteration between solving (1.4) and (1.5), one of the sets is expanded: P if (1.5) is
optimal, or P if (1.5) is unbounded. In (1.4) the values of z are restricted to be
convex combinations of the points in P, and non-negative linear combinations of the
rays in P,.

In the spirit of Theorem 1.1, the constraints associated with the dual variables ¢
and ¢ in (1.4), along with | > 0, form a partial representation of A,. Consistent with

our carlier definitions, we define this set as
Ay={z:z=X1,31=1,1>0}

and so (1.4) becomes

miaimize c’z, z € A, N A,.
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We pictorially represent the D-\V decomposition of (1.2) in Figure 1.3. On the
left is an anatomic representation of the row index partition, and on the right is a

2-dimensional geometric representation of the intersection of the two polyhedral sets
.Al and A).

v ¥
A%
x A, e

Figure 1.3: Partitioning constraints and set intersection.

We graphically and geometrically represent the D-\V algorithm with its top and
bottom subproblems (1.4) and (1.5) in Figure 1.4. On the left, the two <ircles repre-
sent the subproblems, and the arrows, or arcs, represent channels of communication
for their solution information. “This diagram will be referred to as a commaunicalion
nelwork, on which the decomposition algorithm bases its protocol for passing mes-
sages. The arcs in the diagram arc of two types: up and down. Up arcs always pass
primal solutions that are collected at the destinations and used to form partial rep-
resentations of the primal feasible regions of the sources. A down arc always passes
dual solutions, of which only the most recent is retained at the destination and used

to modify the objective function of that subproblem.

Figure 1.4: Subproblem communication and partial representation of A,.
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On the right of Figure 1.4 are 2-dimensional geometric representations of the
feasivle regions of (1.4) and (1.5). The two dots in the corners of the region A are
the totality of its extreme points, some of which are passed to (1.4). The region A;
in the drawing above A; is based on any combination of extreme points and rays
passed. One of the rays is drawn twice to show its dependence on the extreme points
passed. The six dots in the intersection of A, and 4, are the possible extreme point
solutions to (1.4), depending on which combination of the extreme points and rays of
A, were used to construct A,.

Given that (1.4) is initially infeasible, the first order of business is to find a point
in A; NA; in order to demonstrate the feasibility of (1.2), then to find a feasible point
that minimizes the objective function. The next theorem describes an algorithm that
accomplishes these tasks. The set A; = {z|% + af, YV € conv(P;) and £ € Py}
begins empty and is augmentaed in cach cycle between Steps 2 and 3. It in turn
defines the added data § and X in the formulation of (1.4).

Theorem 1.9 (Dantzig-Wolfe Method) This procedure performs O(1.2):
L Let P, =P, =0.
2. Consult O(1.4) and if it relurns
o an optimal dual eztreme point, let (). 8,0) — (¥, 1,0),'
e a primal ezlreme ray, STOP—0O(1.2) is z;
o a dual cxtreme ray, let (4,8,0) — (J;,O,é.).
3. Consult O(1.5) and if it returns
o an oplimal primal ezlreme poinl, and
i) 5 <0,let P, = P U {z} and go to Step 2
ii) 23 20,STOP—ifé =1, O(1.2) is & from O(1.4) and (2T #T), else
0(1.2) is (7T #T);
e a primal extreme ray, let P, — P, U {£} and go to Step 2;
o a dual eztreme ray, STOP—0(1.2) is (0 #7).

Proof: We will work from four cases and then show finiteness.



14 CHAPTER 1. SYMBOLIC DECOMPOSITION

Case 1: If A = v and A; # 8, O(1.4) will finish infeasible, implying =, =
#1(by — Aiz) >0 Vz € Az Then, O(L.5) will return optimal extreme points with
22> 0. O(1.2) returns (%, *%2).

Case 2: If A; # @ and A; = 8, O(1.5) will return a dual ray. O(1.2) returns
(0 7).

Case 3: If A; # @ and A, # 0 and in Step 2, O(1.4) is a dual ray, then
by Theorem 1.5, the hyperplane {z : 0+ ¢z = 0} strictly separates A; and Az
According to Strr ) and Equation (1.5) we must find a point as far as possible on the
opposite side of this hyperplane from 4, that also lies in A;. If no such point exists,
%3 = 0 and the original problem (1.2) must be infeasible; O(1.2) returns (#7 #3).

On the other hand, if one does exist, go back to Step 2.

Case 4: I{ A; # 0 and A; # @ and in Step 2, O(1.4) is a dual point, then by
Theorem 1.2, the hyperplane {z : 8 + z = 0} separates A; from all points = € A,
that could give a better value of c™z. According to Step 3 and Equation (1.5) we must
find a point as far as possible on the opposite side of this hyperplane from Aj; that
also lies in A;. If no such point exists, the original problem (1.2) must be optimal,
and O(1.2) returns z, (#] #J), where z is the present primal optimal solution to

(1.4). On the other hand, if one does exist, go back to Step 2.

Finiteness: Step 3 can never pass the same information twice because any dual
solution from (1.4) satisfics § + ¢z > 0 for all z € A;, and the procedure would
stop either optimal or infeasible. The procedure is finite because it is drawing upon a
finite set of extreme-point and extreme-ray data of A, that can be passed from (1.5)
to (1.4). At any point in the algorithm some subset of this information is in the top
subproblem. Each such subset must be different because the top’s feasible region is
expanded in each cycle. Since the number of subsets is finite and none is repeated,

the algorithm must eventually stop. ]
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1.3.3 The D-W Communication Network

The goal of this chaptcr and the next is to characterize the space of all decomposition
schemes by deriving the subproblem formulations in increasingly complex steps. At
cach step, the system of subproblems will be transformed into an equivalent symbolic
representation, and a symbolic operation will be defined to mimic the decomposition
step.

To introduce symbolic decomposition and to develop a formal representation of
D-W decoinposition, let us formalize the concept of a communication network. It
is a symbolic representation of a decomposition scheme containing the information
necessary to define all of the subproblems, symbolized by nodes, and their interactions,
symbolized by arcs.

Let GN be the set of all communication networks on N nodes. These networks are
alternative representations of LP decomposition schemes. We will define a transfor-
mation from the space of all decomposition schemes to all communication networks.

It will be shown that this transformation is reversible.

Definition 1.10 (Communication Network) A communication network is a five-

tuple. For example,

g= (AI,R.“,C",A,T,), Vn EN: ae Aa

where the tuples are defined to be
set of nodes, N # 0,

node n’s row indez sel,
node n’s column indez set,

set of arcs, A = {(ny,n2) € N2 : there is an arc from node n; to n,}, and

Asp P

the type for arc a (up, down, left, or right), where if A =0 there are no T,.

The arc types left and right are used in the Benders decomposition method and

explained later. They are included here for completeness of the definition.
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The simplest network is one with only one node and no arcs. It symbolizes a

Jincar program that has not been decomposed. We offer gy as an example:
o = ({O}Sw!xi a) € gl'

The node is numbered zero. The sets of row and column indices are respectively =
and x. The sct of arcs is emply, and the arc types are not applicable. The network g,
symbolizes everything in the formulation of the problem (1.1) except the actual values
of the data (A,b,¢). A communication network, together with the data (A,b,¢), iy
sufficient information to obtain a solution to (1.1).

Subproblem index sets are used in the definition of the forward transformation,
which was first depicted in the shaded region of Figure 1.2. An overbar distinguishes

them from the node index sets of communication networks. Typically, Ry 2 R and
én _D. cw

Definition 1.11 (Subproblem Index Sets) Let the set R, contain all row indices
of the lincar program subproblemm associated with node n, and let G, contain all column

indices of the lincar program subproblem associalea with node 1.

Thus in the example above with one node and no arcs, Ry = =, i.c., all rows, and
Co = z, i.c., all columns.

We now define a communication network based on the Dantzig-Wolfe (top and
bottom) subproblems. This operation was referred to when explaining Figure 1.2.

We are taking the initial step from linear programs to communication networks.

Definition 1.12 (Forward Transform) The forward transform from a D-1V de-
composition scheme to the communicalion network gp is a five-step process:

1. Define the set N having onc node for each subproblem.

2. For cach node n € N, define the elements of the row index set Ry = R, NR.

3. For each node n € N, define the elements of the column indez set C, = G, NC.
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4. For cach subproblem ny € N containing constraints indezed by 0 and i that
receive information from another subproblem ny € N, define an arc (nam;) € A

of type Togn, = Up.

5. For cach subproblem ny € N containing constrainls indexed by v that receive
informalion from another subproblem ny € N, define an arc (nan,) € A of type

Tosny = down.

With these transformation rules, we can derive the network in Figure 1.4 corre-

sponding to the two Dantzig-Wolfe subproblems (1.4) and (1.5).

1. M = {1,2} since there are two subproblems, with 1 corresponding to the top

and 2 corresponding to the bottom.

(L4

. Ry = m and Ry = =, signifying that the rows are partitioned so that those
associated with =; go to the top subproblem and those associated with =2 go

to the bottom subproblem.

3. C; =C, = z as the columns were not partitioned (that comes later).

-
—

. 0 and v appear in (1.4) so let A — AU {(21)} and Ty = up.
5. v appears in (1.5) so let A «— AU {(12)} and T3, = down.

In summary,

gp = ({1,2}, =1, %2, 7, 7, {(12), (21)}, down, up) € G*.

In this notation the set of nodes appears first, followed by a list of row index sets,
one for each node, followed by a corresponding list of column index sets. Next is the

set of arcs followed by a list of arc types.
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Theorem 1.13 (The Reverse Transform) The rcverse transform from gp back

to a D-W decomposition scheme procceds as follows:

1. For cach node n, creale a subproblem beginning with the original constraints of
the form
Az 2 b;, Vi€ R,

2. Corresponding to the up arc from 2 to 1, include constraints in the lop subprob-

lem of the form

where § and X are informalion transported by the up arc.

3. Corresponding to the down arc from 2 to 1, include constraints in the bollom
subproblem of the form
Sw > ~§ — 1,’.).'1:,
where (0,5,9) is information transported by the down arc. In addition, place

the term +8w in the objective row.
4. Place the term +c'z in the objective row of the top subproblem.

5. Place the non-negativity constraints z 2 0 in the bottom subproblem.
Proof: Proof by example (WLOG). ]
We use the node index set Rp in the following definition.

Definition 1.14 (Dantzig-Wolfe Operator, 8) The Danlzig-Wolfe operator B
maps G into G* using a partition [Py, Py] of Rp:

CJ‘ E[Pl,PQ] — g’.
In words this means:

Apply Dantzig-Wolfe decomposition to the lincar program associated with

node n in the communication network. Partition the constraints so that
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those corresponding to the dual variables in Py arc in the top (D-W Mas-
ter) subproblem and those corresponding to the dual variables in P, are in
the bottom (D-W Slave) subproblem. The algorithm described in Theo-

rem 1.9 is implicitly associated with the resultant communication network.

This is our most clementary row partition. Begin with the network g,, which has
only onc node, and map it into a two-node network corresponding to the left side of
Figure 1.4. Thus, g, = ({0}, 7; Ux3,2,0) and

gp = g1 Bm, 7o),

where gp was given above. From gp we can determine which nede is the top or
bottom by the arcs that link them. The up arc must be destined for the top node
(subproblem).

The next definition is needed to establish an equivalence between subproblem
schemes and communication networks. We define the Inverse Operator on only those
collections of nodes that, once collapsed, can be re-split to regain the original net-
work. Later we will rely on this reversibility property of the inverse operator when

characterizing the space of all communication networks, GV.

Definition 1.15 (Inverse Operator, O) The inverse operator O takes a set of

nodes and collapszs it back into a single node. It is defined such that
9 =(0:8[P, P)) 0 {1,2},
Jor all partitions [Py, Py] of Ry.

In the expression g, = gp O {1,2}, two nodes are collapsed into one, and the arcs are
discarded.

For networks with more than two nodes, the inverse operator can be thought of
as identifying implicit subproblems, i.e., collections of subproblems that imitate, in
concert, a subproblem that does not exist explicitly. This is explained more carefully

in Chapter Two.




20 CHAPTER 1. SYMBOLIC DECOMPOSITION

‘The implication of the triple (the transform, the D-W operator, and the inverse
opcrator) is that we have created the symbolic space G? within which we can mimic
the algebraic manipulations of decomposition. By partitioning the index set of a
node in a specific way, we mimic the creation of two subproblems from a single LP.
Alternatively, the original LP can be regained by combining the index sets of the two

nodes, also in a spccific way.

1.4 Benders Decomposition

The purpose of this scction is to derive an oracle for LPs that have been sliced
vertically (partitioned by columns) by dualizing the concepts we have discussed for
those sliced horizontally (partitioned by rows). The theorems and definitions of the
previous section will thus return in their dual forms. To characterize G' and G2,
we first complete the forward transform by including vertical slicing and deriving its
companion oracle. Then we define in sequence: the dual operator, its inverse, and

the dual network.

1.4.1 The Subproblems

Now consider partitioning the LP (1.1) where A= (A3 Ay) and ¢’ = (' cf), and
g = ({0}, 7,21 Uzs,¥). The index sets z, and z, form a partition of the column
index set z of (1.1) and = is its row index set. With this column partition the LP
problem becomes
. T, T — -
o anTamss (16)
st. 71 Asz +A420 20
The subproblems and the oracle for Benders decomposition [Ben62] can be derived
directly from D-W decomposition by replacing primal/dual steps by corresponding
dual/primal steps. We want the decomposition-style oracle O(1.6) that utilizes O(1.7)

and O(1.8). A vertical slice through A between x; and =z, partitions iis column index
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set C. To derive the Benders subproblems, we take the dual of (1.6), apply the D-WV

operator, and then take the duals once again of the resulting subproblems,

Taking the dual of (1.6) gives

max b ==z
x20
st. 711 Alx < (1.6)2

z2: Alx <o,

where we have introduced the notation ()2 to indicute the dual of the LP argument.

Applying D-WV decomposition to this problem as was done for (1.2) gives us the
two subproblem formulations (1.7)? and (1.8)°. We have substituted the variables
(t,1, A, uyw) for (0,9,1,v,w), and the data (%,11,5,d,1) for (5, X,¢,8.8). They

are corresponding Greek and Reman characters. Specifically,

max b =2
x,A20 -
sit. L A =
! (1.7)°
y: NMA=Ix=0
Ty : Alzx < ¢,
and
max dw = z
x20,w - -
st. u: Jrtdw> -t (1.8)°
2,0 Alx <,

Define By = {r : Alr < ¢} and B, = {x : ATr < 55> > 0}. Note that if B is the
feasible region of (1.6)° then B = B, N B,, and the columns of the matrix II contain

extreme points and extreme rays of B,. We define D; and D, to be the respective

subsets of the extreme points and rays of B, and get fI.,- € D, UD;. Since we define
3; to be 1if I1; € D, and U otherwise, the = in (1.7)° must be an element of B if D,

and '52 contain all of the extreme points and extreme rays in B,.
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The respective duals of the previous two maximization preblems give us the stan-

dard subproblems of Benders decomposition:

. 'r — -
tllg‘l){;.l Gt + = =
st. ®: Ayzy =Ty = (1.7}
A %y +5t 20,
and
. T - - ==
g:-!o‘l) C T2 tu ]
st w: du=d (1.8)

7 Azp+yu>0,
1.4.2 The Benders Method

To construct a decomposition procedure that performs O(1.6), we first make the

following definition.

Definition 1.16 (Dual Oracle) The dual of an oracle, symbolized as O7(-), inter-
prels the dual solutions of O(+) as primal solutions, and the primal solutions of O(-)

as dual solulions.

As defined, the dual of the dual oracle is the original oracle. We get the following

property by combining the dual oracle with the dual of a lincar program.

Property 1.17 (Oracle Dual Symmetry) The oracle O(:) is dual symnmetric in
that
0°(-)? = O(:).

We are reusing our notation (+)? to indicate the dual of the LP argument. To verify

this property, consult Table 1.1 and note that the simplex method can perform O(-)%.

Corollary 1.18 (Benders Method) The following procedure can perform O(1.6):

L. LetD=D=0.
2. Consult O(1.7) and when it relurns
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o an oplimal primal eztreme point, let (3, d,f) «— (3,1,0);
o a dual cxtreme ray, STOP—O(1.6) is %,
o a primal ext2me ray, let (7, d,f) — (§,0,1).

8. Consult O(1.8) and when il relurns
e an optimal dual extreme poinl and
i) 22 <0, let Dy — D2 U {#), and go to Step &;
ii) 2,20, STOP—if§ =1, O(1.6) is (2T 47T) and #, the latler coming
from O(1.7), otherwise O(1.6) is (2T 2I);
e a dual exlreme ray, let Dy — Dy U {}, and go to Step 2;
o a primal cztreme ray, STOP—0O(1.6) is (0 £1).

Proof: Begin with the Dantzig-Wolfe Oracle in Theorem 1.9, and wherever O(-)
is consulted, replace that consultation by OP(-)?, using the Oracle Dual Symmetry
Property. Next, for cach ef the three cases for solutions, interchange the words primal
and dual, and replace the oracle consultations as before, but with O(:)P, using the
definition of a dual oracle. Finally, replace the subproblem formulations with their
duals, and replace the oracle consultations as before but with O(:), using the definition
of (-)2. The oracles O(1.7) and O(1.8) for the Benders left and right subproblems

then become the results we require to complete O(1.6). ]

As a note on the milestones of the procedure above, once having found # €
B, N B,, we have demonstrated primal boundedness for (1.6). To continue, we must
work toward dual optimality in order to show primal optimality. If we find dual
unboundedness then the primal form (1.6) is infeasible.

We will anatomically and graphically represent the Benders decomposition of (1.6)
as Figure 1.5. On the left, the matrix A is sliced vertically between z; and z; to
symbolize the partition of the set z into the sets z, and z2. On the right is the
communication network, on which the algorithm bases its protocol for passing infor-

mation and making modifications. The right arc always passes primal solutions, of
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which only the most recent is retained at the destination (node 2) and used to modify
the right-hand side of the subproblem. The left arc always passes dual solutions that
are collected at the destination (node 1) and used to form a partial representation of

the dual feasible region of the source node.

X, ox,
Figure 1.5: Partitioning constraints and communication.

1.4.3 Dual Communication Network Theory

The network theory corresponding to the above subproblems and oracle derivations
is itsclf replete with the use of duality concepts. First, the Forward Transform (frem
subproblems to networks) nceds two new rules that are dual to Rules 4 and 5 and
serve Lo transform the Benders (left and right) subproblems. Next, we present the

dual to the D-W network, which is generated by the Benders operator.

Definition 1.19 (Forward Transform continued) The forward transform from a
Beaders decomposilion scheme ts a five-step process. The first three sleps are laken
as those in the prior Forward Transform definition, and the last two are addilions lo

the prior that complele the definition over G' and G2,

6. For cach subproblem ny € NV containing variables named y and t, and for cvery
other subproblem ny € N that provides information for those columns, define

an arc (nany) € A of type Ty, = lefl.

7. For each subproblem ny € N conlaining variables named u, and for every other
subproblem ny € N that provides information for those columns, define an arc
(nany) € A of lype T, 0, = right.
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Theorem 1.20 (Dual Reverse Transform) The reverse transform back to a Ben-

ders decomposilion scheme from gy proceeds as follows:

1. For cach node n, creale a subproblem beginning with the original columns z of

the form

6
A, Vi €2,.

0/

2. Corresponding to the left arc from 2 to 1, include columns t and y in the left

subproblemn of the form

1 0
0] and | --I'{,
¥ it

where ¥ and 11 are information transported by the left arc. The constraints

indezed by \ are 2 ones.

3. Corresponding to the right arc from 2 to 1, include columns in the right sub-

problem of the form

<

where (I, d,§) is information transported by the right arc. In addition, place the

term dw in the right-hand side.
4. Place b in the right-hand side of the left subproblem.
5. Make the right subproblem’s constraints indezed by = into > ones.

Proof: This theorem i< derived from the reverse transform in the same manner that

Benders decomposition was derived from D-W decomposition. ]
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Using the forward and reverse transform on the D-W and Benders subproblens
and networks, and the duality of those subproblems, we can obtain a duality theorem

for the nelworks. The following definition will help with the mechanics.

Definition 1.21 (Transpose Arcs) a) up lranspose is type left, b) down transpose
is lype right, c) left transpose is type up, d) right transpose is lype down.

Property 1.22 (Arc Duality) The transpose of the transpose of an arc type is the

same lype.

AL this point we introduce our first duality theorem for communication networks.

Theorem 1.23 (Network Duality) 70 take the dual of a nelwork g with nodes N
and arcs A, interchange the row and column indez sets of cach node and lranspose
all arc types. We call the result g° and note that the dual of gP is g. The problem

data becomes (—A, —b, —c) so thal minimize switches with maximize, and 2 swilches
with <.

Proof: \We can work cither way through the sequence

Xfonn Dual Xform
9o 0(1.2) N O(1.6) o 9B

which is necessary and sufficient for the short form

Dual
9o gs.

~

The application of the D-W operator to dual nctworks as in
g5 =97 B[z,
creates a new operator for our symbolic calculus.

Definition 1.24 (Benders Operator, @) The Benders operator maps nctworks
in G! inlo those in G? using a parlition [Py, Py] of Co, a subproblem indez set for

node n.
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In words this mcans:

Apply Benders decomposition to the lincar program corresponding to the
node to be split in the communication network. Partition the variables
so that x, is in the left (Benders Master) subproblem and z, is in the
right (Benders Slave) subproblem. The governing algorithm described in
Corollary 1.18 is implicitly associated with the resultant communication

network,

This case also begins with one node and no arcs, g, = ({0}, 7,z U z2,0), and

98 = 910 zy,z2),
where gg = ({1,2}, 7,7, 1,22, {(12), (21)}, right, left).

Property 1.25 (Benders Inverse Operator) The inverse operator O is applica-

ble to the Benders operator as well as the D-1 operator:
o =q@P,P)0{1,2},
for all partitions [Py, Pa) of Cy.

Proof: Since we know that g, = (g B[P, P]) O {1,2} already, by using net-
work duality, it must also hold that g, = gP = (9P B[P, P)) D {1,2}. In ad-
dition, since both g§ = g¢P 8{zy,2,) and gg = ¢, @ [z1,72), we now have gy =
(91 @ [zy,22))° O {1,2). But inversion is not concerned with indices or arc types, so
finally, 9, = (9, @[z, 3)) O {1,2}. |

1.5 Subproblem Interfaces

The positions of nonzeros in, and the partitioning of, the » _straint matrix affects
the quantity of information comrnunicated between subproblems. Vacuous columns

in a row partition let the corresponding variables be free of constraints. When this
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occurs, there is no necd to pass information indicating that a variable is free. It is
instead possible to make this fact implicit in the formulation of the other subproblem.

The subproblem interface theorem characterizes the portions of subprobiem so-
lutions that arc exchanged. It is based on the following LP formulation, which uses
a partitioning of the columus of (1.2) so that Ay = (Ay  Ana), A2 = (Aa An),

and ¢T= (cI cf). Thus, the LP of interest is

: T. Tpn o= =
g'l;l(l) QT+ Qry==:
2220 1.9
s.L. Y A":z:l + A];!Ig _>_ bl ( ' )

72t Anzyt Anza 2 by,
with accompanying starting nctwork g, defined as follows:

g1 = ({0}, 7 Uma,zy Uzy, B).

Theorem 1.26 (Subproblem Interfaces) Lel us essume that (1.9) is decomposed
by the D-IW method using the row parlition (7y,72). If Aja =0, the dual solution lo
¥ in the top subproblem is a constant cqual to —c¢. The subproblems are formulaled
as (1.10) and (1.11)" below. Similarly, if Azy = 0, the primal jeasible region for xa
is the positive orthant in the boltom subproblem and can be expressed instead using
sudproblems formulated as (1.10)” and (1.11)".

Proof: With D-W decomposition of (1.9) using the partition [, 2], we get the

subproblem formulations:

min can + T =5
11,232
st. 0: g =1
P Xl = Iz =0 (1.10)
s Xaal ~ Jz;p=0
)l Anzy + Az 2 by,
and .
min dw = z,.
z;:l>%ow
sh v: fion 4 Pozs+ 5w > (1.11)
72:  AnZa + Anzy 2 by
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Case 1: If Aj; = 0 the solution for 4 always equals —c; by the dual constraints.
Substituting Naal for z;2 in the objective row of (1.10) and fixing Y2 = ~c in (L.11),
we get

é&i}\u IXagl + Ty = 3
st 0 ‘_:}TI =1 (L10)
e Xal =TIz =0
T Anzn 2 b,
and

N T ¢
min Tag b S = 3.
1130 22 2
ra,w

- - - !
st v Pz +dw > ~0 (1.11)

x2: Anza + Anan 2 b

Case 2: If Ay = 0 the feasible region for x4, is the positive orthant. Therefore,
by moving the non-negativity constraints for these columns to the top subproblem

and climinating those columns from the bottom, we get

fp?-lgl c',r:rn + C:fmu =2z
T11,%3220 .
sit. 0: 51‘1 =1 (1‘10)11
\bxi an—hu =0
o Anzy + Apzia 2 by,
and
Sup,  tow=a
st v Yz9 + 0w 2> -0 (1.11)"
7y Anza 2 by

In summary,
If Aj2 = 0 then (1.10)(1.11) = (1.10)'(1.11), and

if Azp = 0 then (1.10)(1.11) = (1.10)"(1.11)".
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We have also proved that the communication graph is not affected by alternative
subproblem formulations, hence alternative subproblem interfaces: gy Blm, 7] = g2
where

g2 = ({1,2}, %1, 72,7y Uzq,y Uza, {(12),(21)}, down, up).

The dual of the Subproblem Interface Theorem yiclds the following corollary. The

subproblem formulations are left as an exercise.

Corollary 1.27 (Subproblem Interfaces) Lel us assume that (1.9) is decomposed
by the Benders method using the column partition [xy,za). If Ay = 0, the primal
solution to y; in the left subproblem is a constanl cqual to —=ba. Similarly, if Nga =0,

the dual feasible region for =g in the right subproblem is the posilive orthant.

In the sequel, unnccessary variables and constraints will be dropped when subma-

trices are equal to zero.

1.6 Summary

We have reviewed the theory of Dantzig-Wolfe and Benders decomposition, and found
their subproblem formulations and their algorithms to be duals of each other. In the
process, we introduced the symbolic space of communication networks with one and
two nodes, G' and G? respectively. The algebraic decomposition of LP subproblems
is cquated to the splitting of node index sets in communication networks. The set G
contains one network which is self dual, and the set G2 contains two networks which
are duals of cach other. In the next chapter we will explore the span of decomposition
schemes possible under our defined operators. It is GN. Since higher dimensional
schemes are constructed upon lower dimensional ones, and since the two entries of G2
are duals, this automatically divides all of GV in half. Every scheme in one half has
a dual scheme in the other; except for G*, which lies in both (or neither).

We have shown that the duality of lincar programming translates dircctly to a

duality for networks. The next chapter characterizes the space of all subproblem
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formulations and likewise their accompanying communication networks. Once chic-
acterized, we can give the transforms and the duality of all networks.

Finally, the pattern of zeros and nonzeros in the constraint matrix affects the
interfaces between subproblems, and even their formulations. By investigating these
patierns, we can drastically reduce the quantity of information communicated over

the network for sparse problems.



Chapter 2

Characterizing Communication
Networks

FFICIENT use of a parallel computer requires that there be many subprob-
lems that can be solved independently. Having completed the derivations
of the top, bottom, left and right subproblems, and the communication dia-
grams describing their interactions, we now embark on an exploration of the versatility
of the D-W and Benders partitioning operators and their use in crcating many sub-
problems for a parallel computer to solve. The following sections describe a variety
of decomposition schemes that can be generated with partially ordered sets of parti-
tions within partitions. Each scheme alone is capable of performing the oracle on the

original problem, O(1.1).

This chapter concentrates solely on partitions, subproblems, and networks; a skele-
tal framework and on which to attach the muscles, the algorithms. The next chapter
covers the parallel decomposition oracle, which is a relaxed form of nesting oracles.
Naturally, we get a serial oracle from the parallel one when using only one processor.

For now we take faith in nesting the oracle and procced.

32




2.1. NESTED DECOMPOSITION 33
Lmur Programs Communication Nc(u orks
{ 4 lmlul } \
! 'u {Transform J f
near - 1
L ’(' h’."m ‘)v 4 Orcmon\g
A T S s ionOncNodcs:
) § (Chap(ctl) 3
1 * 2nE N o P
Tradiional ? )
Algebra 1 Haal
[ ﬁ a {
: £ bu(ing \is
v ‘\ Opcrators
gt e e e Chanter 2)
: v o “Generalized ‘(~ s ) {
1 Lincar < Jnnsform ¢ :
(| Progam | e »| ¥ ¢
H{ Subproblems (Chapter D) g

Figure 2.1: Symbolic Decomposition covered by Chapter Thwo.

2.1 Nested Decomposition

In the previous chapter we described decomposition in terms of operations on com-
munication networks that form new, higher-ordered networks. The term nested, in
the title of this section, refers to the practice of embedding one thing within another.
Using our operators, we can nest partitions and oracles with a sequence of slices. For
the present, we will nest only D-\V decomposition and state simply that the dual of
cach operation we perform applies equally well in the context of Benders decompo-
sition. As an extension to traditional decomposition, we introduce cross-nesting, the
practice of using both D-\V and Benders decomposition on the same problem.

\We consider three variations of nesting the D-\V and Benders operalors in the
network gp, which together with their dual versions comprise the complete set of
cominunication networks on three nodes: G. The three variations are: splitting the
top with 8 and splitting the botiom with 8 and @. \We demonstrate the algebraic
derivations of the subproblems and note that we can successfully use the defined

operators to chronicle the mapping of gp into G3. As a summary, we present the
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genceral forward transformation, and apply our decomposition operators to nctworks
in GV,

Early refercnces on nested decomposition are [Dan73), (Gla73), and [Ho74]. Later,
Abrahamson [Abr83] and Wittrock {\WVit83] enhanced the dual version or Nested-
Benders Decomposition. Here, we take a very generic view of nesting, consulering

more fashions of subproblems.

A; bl
Before starting, let us redefine (1.1) with A= | A; | and b= | by | so that we
_ A by
now wish to find an oracle for solving
min clx==z

x20
CH . A,:: ?_ b|

w: Az 2 b
T Mgz 2 by,
with its corresponding network having onc node and no arcs,

h= ({0}1 L3 UW? U‘X;;,.'C, 0)'

The last chapter covered the two cases of applying B and @ to g, to generate
gp and gg. In turn we will ncw apply the same operators to gp and gg. The main
difference between splitting the node in gy and one in cither ap or gg is that the two
latter types have incident arcs. What do we do with these incident arcs? In the next

two lemmas, we adopt the convention that:

When a nede in gp is split using 8, those arcs once incident to the split

node will be made incident to the new top node.

This convention makes communication networks have tree structures. Splitting a
bottom node extends a branch of the network, while splitting the top node starts a

new branch.

Lemma 2.1 (8 on the Bottom Node) The D-¥ operator can be applied to the

bottom node using the expression

gs patg gt, E {7"], [7{2, 7r3]]’



2.1. NESTED DECOMPOSICION 35

where

93 = ({1,3,4}, %1, %2, %3, 2, 2, 2, {(13), (34), (31), {43) }, down, down, up, up).

Proof: Let [xy,[x2,73]] be a partition of the original row index set R. Decompose
the LP formulated in (2.1) into three subproblems using two applications of the D-W
operator. The resulting subproblems will exhibit a linear communication structure
as in Figure 2.2. The dotted supernode 2 represeats an implicit subproblem that has

itself been decomposed into nodes 3 and 4

Figure 2.2: Spitting the bottom node.

The first application of the operator groups the bottom two indices together in

the second partition:
9 8[n,maUxs] = ga,

where the resulting subproblems are
min clzy =z
20
s.t. 01 : g, 1 =1 (2.2)
l,[l1 : Xgl[ -— I:C; =0
LI Ay 2 bx,
and

min S1wy = 2
1220,w 171 2

st. vyt PTz+bw, >~
w2t Ao > b
x3: Asza 2 bs,

(2.3)
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and g2 = ({1,2},%1,%2 U x3,2,7, {(12),(21)}, down, up). The second application of
the D-\V operator uses the partition [x3, %3} to slice horizontally through (2.3). The

resulting subproblem formulations are

ggg 8wy = 23
Y 1L - - -
st vy 1,{};1.1:3+6ng 2 -0,
* o #
0,: g{l: =1 ("' 1)
Wy Nab—Iz, =0
w71 Aazy 2 b,
and
A, Bwes
s.l. Uy r,’);r::;-‘-f-%w;; _>_ "'02 (25)
x3: Axxs 2 by,

with the vy constraints included in the top partitien.

The final network that corresponds to the subproblem triple (2.2)(2.4)(2.5) is g3

and can be compared to that pictured in Figure 2.2. 1

By rcordering the nesting we just used, we induce a different communication
pattern from the one above. When we split the top node with B, we spawn a new

branch in the network.

Lemma 2.2 (B on the 'Yop Node) The D-W operator can be applied to the lop

node using the expression
)] E[[”h”?]y w*a| = g3,

where

g3 = ({3,4,1}, 7y, 72, 73, 2, 7, 7, {(34), (32), (43),(23) }, down, dewn. up, up).
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Proof: Apply the partition [[xy,%a), %3] to (2.1) to get the system of subproblems

(2.6)(2.7)(2.5), where

min Tz =23
1120
L50
e
0;: §ila =1 (2.6)
v’:l H -i':lx - II[ =0
Yo Xaly = Izy =0
Ll Ay 2 by,
and .
min Siun =35
3.2 - - -
st ug: l,b;rzg + 6|w-, 2 —01 (2-7)
x1: Aizy 2 by,
with the accompanying communication network g4 as shown in Figure 2.3. ]

i

Figure 2.3: Splitting the top node.

The term cross splitling will be used to describe the process of nesting Benders
decomposition within D-W decomposition, and vice versa. We use the following

definition to identify such a condition.

Definition 2.3 (Cross Splitting) A node is cross split when the 8 operator is
applied and it has an incoming right arc, and similarly, when the © operator is

applied and it has an incoming down arc.

We will not cross split added constraints and variables that function as partial

representations of the feasible regions of stili other subproblems (incoming up and
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left arcs). This possibility would take us beyond the scope of this thesis. However,
the extra subproblem data that implement objective or right-hand side modifications
arc considered valid places for cross splitting. For instance, it is valid to partition the
columns of the D-W bottom subproblem (1.5) but not the top one (1.4). Figure 2.4
illustrates the communication network that results from cross splitting the bottom

node in gp.

&

Segay 20'

Figure 2.4: Cross splitting the bottom node.

First, we repeat the LP fomulation used for the Subproblem Interface Theorem:

H 7, Tr, = ~
2)!)% c,:c; + Gy =2
320 2.8
st. m: An.’t; + Anxg 2 b; ("' )

721 Anzy 4 Anzy 2 b,
and its accompanying nctwork is

= ({0}7\"] UFQ,I; UIQ, 0)

Figure 2.4 completes the depiction of all networks in G* that can be generated
from gp. The changes made to gp to get this network do not follow our previous
convention of making arcs once incident to the split node incident now to the new
left node. Because we have cross split, the arcs in question must be duplicated and
made incident to both new nodes. This is evident from the subproblem formulations

and an application of the forward transform.

Lemma 2.4 (I on the Bottom Node) The Benders operator M can be applied

to the boltom node using the ezpression

(918 [m1,m2)) D{z1, 23] = g5,
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where

H= ({113:4}17"I&x2tx2:xl UI:,I;,I;,

{(13), (14),(31), (41), (23), (32) }, down, down, up, up, right, left).

Proof: First we create modified versions of the top and bottom subproblems on
which to demonstrate. To do this, apply D-W decomposition to (2.8) as the following

expression suggests:

g1 =q Bx, %),

where g2 = ({1,2}, %1, %2, 2 Uz2, 21 Uz, {(12), (21)}, down, up). The top and bottom

subproblem formulations are:

min czn + Gz =
)52
st. 0: gl =1
1,!!1 : X’g]l - I:L'u =0 (29)
t: .'221 - Iz;3 =0,
%y Anzn + Az 2 by,
and
"’Illllui"”ln Swl + 3w2 = 52
m20,x2220 i - -
st v Plzy + bw, > -0 (2.10)
vy TN + 8wy >0
72 Anza + Anzn 2 b

Note that some liberty was taken in the formulation of (2.10) by implementing the

objective modification with two added variables and constraints instead of one of

cach.

L]
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Continue by crassing Benders decomposition on (2.10) with the partition [za;, z22).

‘The left and right subproblems are

mnam‘l)&“ dun 4+ t=2zy
ya.l2 - - -
st vy YPlag + 6wy 2 =0 (2.11)
T Anzy -ly =
A M5y + F2t 20,
and - -
min —lutgq bwy = 299,
433, 23220, w3 . -
st. Uy T 29y + 6wy 2 0 (2.12)
T2t Jun+ Anzn 20
Wy ¢ (Ztln = (i,
where w; has followed z3;, and w;y has followed zg;. [ ]

"To summarize this cross splitting example, we began with the linear program (2.5),
applicd Dantzig-Wolfc decomposition Lo obtain the subproblem system (2.9)(2.10),
then applied Benders te the bottom subproblem. This was made possible by express-
ing the added structure for objective modification with multiple constraints, instead
of a single one. The final communication network is g3 and is shown in Figure 2.4.
The final subproblem system is (2.9)(2.11)(2.12).

The following corollary formally notes that the other networks in G3 are duals of

the three above.

Corollary 2.5 (Nested Duality) Thcorems 2.2, 2.1 and 2.4 apply also lo splilting
the nodes of gg with the words top and bottom replaced by left and right, and switching

B with @ and row partitions with column partitions.
Proof: This statement follows from the network duality theorem. 1

In conclusion, the operations on gp and gp have demonstrzed how to split top,
bottom, left and right nodes. The distinguishing feature of these nodes was that
they had incident arcs from either above or below, but not both. We look forward to

having our operators applied to any node in a network.
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2.2 Characterizing G°

As we have stated carlier, the previous three operations on the network gp are defined
to be the only valid ones. ‘Lable 2.1 enumerates the six mappings from G2 to G2, and
Figure 2.5 has them drawn out.

The following are the descriptions for column headings in Table 2.1. The table
represents the results of a boolean function on the column headings. Each heading

can take once of two values.

First Split Uses: Either the B or the @ operator is applied to g, to get cither gp

or 9.
Second Split Uses: The operator used for the sccond slice.

Second Splits Node: The node split on the second slice. We use number 1 to

indicale the top or left node, and the number 2 to indicate the bottom or right

node.

First Second Second
Split  Split  Splits
Uses  Uses Node
1] B8 8 1 Valid
2| B 8 2 Valid
8 11} 1 Invalid
3| B 11 2 Valid
1) 8 1 Invalid
4| O 8 2 Valid
5( m© m 1 Valid
6| O m 2 Valid

Table 2.1: The Elements of G2.
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2 3 4 h)
Figure 2.5: The clements of G3.

2.3 Characterizing GV

By characterizing all decomposition schemes that are attainable with our defined set
of operators, we will be able to state a parallel decomposition oracle that holds over
the entire space. First we need to handle one more case for splitting nodes, then we
can show that our operators are well defined for any node by demonstrating their
validity on the most general case. We need to define a “middle” node and how to

split it.

Definition 2.6 (Middle Node) A node n € N is a middle node if it has incoming

and oultgoing up or left arcs.

Our convention on incident arcs remaining incident to the new top node means that

splitting a middle node adds a new branch to the network.

Lemma 2.7 (B on a Middle Node) The D-W operator can be applied to a middle

node with no incoming left arcs.
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A
Proof: We start by redefining the LP (2.4) by the partition A2 = (An) and
22

b
by = ( n) Lo arrive al

ba

111’1?1.2 Sjws = 2,

T3 w2 - - -

s vg: Pzt wp > ~0,
02 : 53.12 =1 (2.13)
g X’alg —Iz =0
Tay Az, 2 bn
T2 Anzy 2 by

Next, the expression

91 8([m1, [721, 722]}, 73]

suggests that O(2.13) can in turn be performed by the D-W Method using O(2.14)

and O(2.15), where

xlxagx(} hwy =2z
2, un . - -
st vt Plzy + 61wy > =0,
02: Gl =1
. 92 1.
Y2: Xaln -~ Iz, =0 (2.14)
022 R =]
1!)22 . X’gglgg - 132 = 0
g Anz, 2 by
and
Lmin ) {221022 =
s var: YTz + Saowag > —0p (2.15)
Ta:  AnT 2 baa.

The forward transform gives us the cornmunication network in Figure 2.6. i
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Figure 2.6: Splitting a middle node.

In conclusion, our networks get longer from the bottom and bushier from the top and
the middle.

By proving a partial ordering property, we can use terms like upper, above, lower,
and below as relations between nodes. The > symbol is used to indicate an ordering

between two nodes.

Property 2.8 (Partial Node Ordering) There is a partial ordering on the nodes
of networks in GN, following the rule that ny > ny if there is an up arc from na to

m. Node ny is said to be above nj.

Proof: Theie is a directed graph of up and left arcs that spans the nodes of g € G

and it has no directed circuits. Hence, it induces a partial order on up arcs. ]

We now summarize the forward transform from Chapter 1 as a seven-step process.
The first step defines a node for cach subproblem, and the other steps define the other

four tuples in 2 communication network according the subproblem indices: R, and

Ca.

Theorem . 3 (Generalized Transform) The transform from a system of N sub-

problems to a communication nelwork with N nodes is a seven slep process:

1. For each subproblem, define a node in the set .
2. For each node n € N, definz the elements of the row index set R, = R, NR.

3. For each node n € N, define the elements of the column index set C, = G, NC.
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4. For cach subproblem ny € N containing constraints indexed by 0 and ¥, and for
cvery olher subproblem ny € N, that provides information for those constraints,

define an arc (n2ny) € A of type Toyn, = up.

. For cach subproblem ny € N containing constraints indexed by v, and for every

<y

other subproblem ny € N that provides information for those constraints, define

an arc (nany) € A of type Toyn, = down.

6. For cach subproblem ny € N containing variables named y and ¢, and for cvery
other subproblem na € N that provides information for those columns, define
an arc (nyny) € A of type Tpyn, = lefl.

7. For cach subproblem ny € N containing variables named u, and for cvery other
subproblem ny € N that provides information for those columns, define an arc

(namy) € A of type Toyn, = right.

Proof: First, the theorem holds for schemes involving only D-W decomposition,
since we know that the transform is correct for a top, bottom, or middle node, as
alrcady demonstrated. Second, by network duality, the theorem holds for schemes
involving only Benders decomposition. Finally, when both types of decomposition are
represented in the same network, we can transform a node with adjacent horizontal
and vertical arcs because the arcs have independent effects on the formulation. The
added variables and constraints of a subproblem interact only through their incidence

to the original primal and dual variables, z and . ]

Definition 2.10 (Inverse Operator on GV) The inverse operation on GV is de-

fined as one being reversible by a series of applications of the D-W and/or Benders

operators.
gN DN- —_ gN—lN'l-H,
where || < N. For the specific networks g, € GV and g, € GN-W'I, 16 take an

inverse using any N* C Ny, collapse all the nodes into one, and redefine all of the

incident arcs as follows:
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LM =N =N*+{n}, n €M,
2' T\"" = Uﬂ]E”’ ml)
3‘ C = Unl&V' cﬂn
'{' -Al — Ay — UmE:V'{("l nz)} - Un:G-V° {(nl "2)}
+ U(m n2)€As {(" "2)} + Uns na)eAs {(n1n)},
meN ni€N*
5. Toyn = Taguyy V(ny 1) € Ay and (n; ny) € A,

where we have used + and — to mean set union and subtraction. Note that we will

not allow sets to contain duplicate clernents.
The inverse operation is defined in terms of being reversible. We now give two

conditions on the set of nodes to collapse A*, that offer this feature. First, define the

following terms:

up connected nodes: ror some graph g € GV, the nodes in the subset A* € M are
said to be up connected if and only if for all ny,n, in M* there exists an ny, ns

undirected path on up arcs that visits only nodes in °.
left connected nodes: The dual of a network on up connected nodes.

Lemma 2.11 (O for Connected Nodes) If for some network g € GV, the nodes
in N* € NV are cither up or left connecied, then the effects of the inverse operation
g'=g0N"
can be reversed by a series of D-W or Benders operations, respectively.

Proof: By induction on the number of nodes in M.

1. Show it for |V*| = 2. Take from a network g € GV two nodes n; and n, which
are up connected. We have shown in Chapter One the inverse operation used on
the networks in G2. This step is reversible because when splitting the aggregate
node, incident arcs can be replaced to their original positions by choosing the

proper partition.
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2. Assume thal the operator holds for [N*|= N - 1.

3. Show it for |V*| = N. Take a sct of up connccled nodes N where [M°| = N.
We have shown that any two up connected nodes in M* can be joined into
one, thus reducing the order of the network by one node. By the induction

assumption, the operator then holds for any M-,

Lemma 2.12 (O for Unconnected Nodes) For some nctwork g € GN and some
subset N* = {ny,ny} C N, ny and n, are both up connected to ny, then the cffects of
the inverse operalion

g'=g0ON*

arc reversible by a series of splilting operalions.

Proof: We usc a bidirectional sequence of inverse and splitting operations on net-

' to G° o show that the necessary node configurations can be achicved.

works in G
For larger networks, any arcs not incident to these three nodes are left unaflected,
by design. Incidend arcs are cither between the three nodes, in which case they are
covered by the operators on G, or they pass outside the three nodes, in which case
their sources and destinations within the three nodes can be set by choosing the split-
ting partitions properly. Transforms from one network to another and back again are

shown in Figure 2.7 and explained below.
0: Collapse node 2 into node 1.
0O: Collapse node 3 into node 12.

B: Srlit node 123 with a partition of the rows.
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3

- & M@.._.g

O O H

Figure 2.7: Proof of moving up arcs.

us ’{)D

Figure 2.8: The generic node.

Definition 2.13 (Generic Node) As pictured in Figure 2.8, the generic node has

incident arcs such that:

1. incoming Up arcs have Sources in Nys,

incoming Down arcs have Sources in Npg, and

L

incoming Right arcs have Sources in Nps,

>

outgoing Up arcs are Destined for Nyp.

&

outgoing Down ercs are Destined for nodes in Npp,

S

outgoing Left arcs are Destined for nodes in Nip,

and no others.

Lemma 2.14 (Generic Node of G¥) Each node and its incident arcs of a nelwork

in GV can be described within the structure of the generic node or its dual.
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Proof: By induction on the number of nodes.
1. The lemma holds casily for networks in ¢! and G2,
2. Assume that the lemma holds for all nodes of networks in GV.

3. By the definitions of the B and @ operators, no node may be cross split if it has
an incoming up or left arc. Only the @ operation may be used on the generic
node. Therefore, only left and right arcs may be added when splitting it, which
takes the network from GV to GV*'. The dual holds for the dual of the generic

node.

Lemma 2.15 (GY ON* — GY) Pick a node n in a network gy € GN. Using the O
opcralor, this nelwork can be reduced Lo the four-node nelwork in Figure 2.9, its dual,

or some special case of cither.

Proof: It is sufficient to prove that the connected node scts of the generic node can
be reduced to the three nodes so that
a) Mup = Nps, Mo = Nps, Mys = Npp.
b) Mup # Nio, Vup # Mus, Nus # ANup, and
¢) Myp = {nup}, Mo = {nip}, Mus = {nys}, and
We know a) holds since all communication networks are symmetric; for every arc
(m) ng) there is a corresponding arc (n2n;). We know b) holds because the nodes are
partially ordered. \We know ¢) holds because:
e any nodes on left arcs will collapse to either one node in an uf. tree, or the two
nodes: ny,p and n, and
e there is only one tree on up arcs containing n implying that Myp and Mys can

be collapsed to one node each.
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We now define the generalized Dantzig-Wolfe operator on the generic node.

Definition 2.16 (8 on the Generic Node) 7o apply the B operation lo a generic
node n € Ny, from a network gy € GV by, gne = gy B{P, P, we define the

transition of cach tuple in gy lo that in gnyy.

1. Node n is discarded and two new nodes are added: Nyyy = Ny —{n}+{n, na},
where ny,ny € Ny

2. All arcs incident to node n are discarded. Of those, the vertical ones are linked
lo nodes ny, and the horizontal ones are duplicated and incident to both nodes
ny and ny:

Aver = Av= U {('n),(an)
n'e€Ny

+ U {(nlnl)}t’*' U {("I 11')}, fytehl

n'eVys n'€Npp

+ U {('m)},

n'€Nys

+ U {('\m)}, fue PR

n'e€Nps

+ U (' m),(n"na)}

"'G«Vns

+ U {(mn")

n'€Nup

+ U {(mn'),(n2n')}

n'e€NLD
+ {(n1na), (namy)}.

3. The row index scts for nodes ny and ng are the same as for node n: Ry, =

Ra, = Ry, and the column sels for new nodes are determined from the column

partition: C,, = Py and C,, = Pa.

4. The arc types of the repositioned and duplicaled arcs stay the same, and the two

new arcs (ny ny) and (nyn,), become down and up ones respectively:

Tormy, = up,Vn" € Mys, (n"'n;y) € Any,
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Ty, = down, Vn" € Nps,(n"n) € Avia,
T, = right,Vn" € Mps,(n"n)) € Avqa.
T = up, ¥ € Nyp, (mn") € Ay,
Tyne = down,Vn" € Npp,(m n") € Avq,
Tt = left, V0" € Npp, (mn") € Axy,
Tyny = down, and
Taamy = up.

‘The main theorem of this thesis involves a generalized B operation on nodes of
networks in GV, \We first prove the operation on a close cousin of the generic node,

using node 3 in Figure 2.9.

Lemma 2.17 (8 on G*) The B operalor as applicd to the middle node in Figure 2.9

is a special case of the gencralized B operalor on the generic node.

71

0‘5
N2

Figure 2.9: The 4-node generic network.

Proof: Proof by comparison. Take the case where the subsets of connected nodes cach
have one clement, and Myp = Nps = {2}, Nop = Nps = {1}, Nis = Nrp = {3).

We will call this network g4. It has the following specification:

g4« = ({1:2)3’4a }:

T, T, %2 U 73,74, 21, T2,T2,22,
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{(12), (21),(13), (31}, (14), (41), (23),(32), (34), (43)},
T2 =Ty =Ty =r1ight, Ty = Ty, = Ty, =left,

Tay = Ty = down, T2 = Ty3 = up).

where 7 = 7y Uxa UxaU=y. The operation on this network is gs = g,@(x2, x3), where

Js

= ({li?ﬂsnctd: }r

Ty 71 72, T3y Ty T, T2, L2, T2, T2,

((12), 20), (15), (51), 16}, (61), (14), (41}, (26), (52), (56), (65), (54), 45)),
T2 = Tis = The = Ty =right, Tny =Ty = Ty = Ty = left,
Tas = Tsg = Ty = down, Tsa = Tgs = Tys = up),

We enumerate the steps used to convert g4 into gs:

1.

2

One node is discarded and two are added: My = N, — {3} + {5,6}.

. All arcs incident to node 3 are discarded. Of those, the horizontal ones are

linked to nodes 5 and 6 according to the column partition, and the vertical ones
are duplicated and incident to both nodes 5 and 6: Az = A, - {(13),(31), (23),

(32), (34}, (43)} + {(18), (51), (16), (61), (28), (52), (56), (65), (54), (48)},

The row index sets for Nodes 5 and 6 are the same as for node 3: R = R = 72,
and the column sets for new nodes are determined from the column partition:

Cs = 25 and Cg = x3.

. The arc types of the repositioned and duplicated arcs stay the same, and the

two new arcs (56) and (65) become down and up ones respectively.
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Theorem 2.18 (8 and @ on GN) The B operator and its dual M, as defined on
the generic node, cover cuvery possible transition of a nelwork with N nodes to one
wilh N + 1 nodes.

Proof: By induction:

1. Lemma (8 on GY).

o

Assume 8 up to GV,

<o

. Demonstrate that G¥ 8P, Py) — GV as follows:

o Lemma (GN ON* - GY);
e Lemma (8 on ¢4);

e the O opcrator is defined to be reversible, which implies that every node
besides the two new ones ny and n,, and every arc that was not incident

to node n can be restored to its prior status as defined by gn;

The dual argument holds by network duality. ]

2.4 Summary

We arrived at the begining of this chapter carrying a transformation between lincar

programs and communication networks, and some node splitting operators.

o \We proceeded to nest the operators and got: node ordering, cross splitting, and

lots of duality through the choice of the first operation.
¢ The networks with three nodes were characterized in Table 2.1.

e The O operator was introduced and two lemmas about collapsing many nodes

into one are proved.
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e The generic node was introduced, and two lemmas followed. The first one
showed that all nodes are similar to it or its dual. The second one showed that

all nctworks can be reduced Lo some case in G4,

e The generalized forms of the B8 and @ operators were introduced, and then

shown to carry networks first from G* to G%, and then from GV to GV},

Finally, Theurem 2.18 acts as a characteristic mapping {rom onc network to those
having more nodes. Sometimes there is more than one path can be taken to the same
network (associativity), and in addition, the inverse operation need not retrace the
actual path taken to create the network. In the next chapter we will explore the

transformation of networks into subproblems, and consult a parallel oracle.




Chapter 3

Parallel Decomposition

LMOST daily, rescarchers in the technical disciplines envisage new and

diffcrent uses for parallel computers. Lincar programming as a practical

ficld could never have happened were it not for the invention of the serial

computer [Dan87), which revolutionized the approach to complex problems. And

now, the availability of parallel computers will permit the next quantum expansion in

the set of problems that can be solved. The parallel decomposition algorithm will be

a first step in placing mathematical programming in league with other technologics
making use of these new computers.

We view the ultimate information centent of a problem formulation as the solution

to the problem. To obtain the solution, we consult an oracle:
solution = O( problem ).

Linear program solutions consist of points and/or rays of the primal and dual feasible
regions of the problem. A typical oracle for solving lincar programs is the simplex

method:
LP solution = simplex(LP).

This thesis is concerned with substituting various decomposition algorithms for the

simplex method. The decomposition algorithms are governed by a communication

95
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network between LP subproblems. Different problem structures will result in different
networks and different subproblems. However, it is possible to define a single general
algorithm having the communication nctwork and the subproblem formulations as its

parameters:
LP solution = decomposition ( network, subproblems ).

The goal of this chapter is to take the information contained in an LP and a
communication network, to produce an equivalent set of information in the form of
a system of subproblems and finally to find the LP solution using a parallel oracle

operating on this cquivalent information.

1 2 3 v P Processor Indices

Read Data
§3.1
E
l
F Subs
p §32.33 B Work done serially
: W Work in parallel
d
O Processor Idling
T Process Subs
! $3.4
m
c
Optimality (Equilibrium)
Print Solution Detected
§3.4

Figure 3.1: Strings of work.

Figure 3.1 lists the steps of parallel decomposition. Along with each step in the fig-
ure are the section numbers of this chapter that explain the step, and a representation

of whether the step is done in serial or in parallel.
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<t
-1

Read Data: The first order of business is to define the problem we wish o solve
and the decomposition scheme used Lo do it. These are specified by the original

data (A, b, c) and the communication network g.

Form Subs: The reverse transform from the communication network into a system
of subproblems is covered in Scctions 3.2-3.3. The information obtained in the

Read Data step is processed in parallel during this step.

Process Subs: The parallel processors act as information carriers over the network,
performing oracles on subproblems and filtering the solutions through interfaces.

A relaxation of the nested oracle procedure is shown to perform O(1.1).

Print Solution: From the multitude of final subproblem oracles, we must construct
onc for O(1.1). Because the subproblem formulations contain all of the relevant

subproblem solutions, this is a simple filtering process and is done serially.

3.1 Starting Information

In the following discussion, we will assume that our lincar program formulation takes

the form given in (1.1), namely

min cle =2
20

st. 71 Az 2 b

(3.1)

3.1.1 The Problem Description

We can break down a problem description into two sets of information: the implicit
information (indices and variables) and the explicit information (problem data).
Indices will play an important role in the discussions of problem structure and

communicated information. Not only the constraint and variable indices are used,
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but those for the right-hand side and objective as well. Thus, we define for LI {115

o Lo be the objective index,
s to be the right-hand side index,
R to be the row index set, and

C to be the column index set.

As in the previous chapter, when discussing partitions, we will use the same sym:-
bols for the names of the primal variables as for the index sels of their corresponding
columns, and the same symbols for the names of the dual variables as for the index
sets of their corresponding rows. Therefore, R = 7 and C = z for LI (3.1).

‘The values of the variables lic in vector spaces that are dimensioned in terms of
their index sets. We see for LP (3.1) that

z the primal variables lic in R, and

7 the dual variables lic in RR.

Finally, the explicit information needed to give substance to the implicit informa-
tion above is the problem data. We will take the convention of positioning this data

within the problem by specifying its indices. For instance for (3.1):

A the constraint matrix is indexed by (7, z),
b the right-hand side vector is indexed by (=, s), and

¢ the cost vector is indexed by (o, z),

This cornpletes the specification of a linear programing problem

3.1.2 The Communication Network Description

The previous chapter explained the process of partitioning the row and colurnn index
sets. It also showed how communication nelworks result from this process. Rather
than operating from partition information, we shall assume that the decomposition

information is in the form of a communication network.
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We repeat the definition from Chapter One for completeness. The communication

network is the five-tuple,
9=V, RuCo, AT), VnewN,a€ A,

where the tuples are defined to be

N sct of nodes,

R, node n’s row index set,

C. node n’s column index set,

A set of arcs, A = {(n) n2) € N : there is an arc from ny to ny}),

T. the type for arc a (up, down, left, or right).

This completes the description of the decomposition scheme to solve LP (3.1).

3.2 Intermediate Information

Several information structures are constructed from the starting information in order
to facilitate the formulations of the subproblems. These are: the Incidence Graph
used to derive subproblem interfaces, the Are Indez Sets which index passed informa-
tion, and the Partition Graphs which identify implicit subproblems and synchronized

information.

3.2.1 The Incidence Graph

(Aybye) = h

The incidence graph & is created from the explicit information (A, b,c). It is bipartite
with one class of nodes over the objective and constraint indices and the other class
of nodes over the right-hand side and variable indices. Two nodes are connected

(always between the two classes), if there is a nonzero entry in the data (4,b,¢),
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corresponding to the two indices of the linked nodes. For instance, if

Ty ™ An 0 b, 9]
= , w= , A= , b= . ande=
] T2 A?l An 0 0
then the corresponding incidence graph is that in Figure 3.2, and

h = ({o,7y, 72,5, 2, 22}, ({0 21), (71 5) (71 21) s (F2 20 ) (2 22) ).

The nodes of h correspond to ageregations of the rews and columas of the lincar
] 85

program so that it represents the incidence between blocks of coefficients. Note that

there is ne er a link between the two nodes o and s, but all other links between the

two classes of nodes are possible.

oW o.
GAO

(s— ()

Figure 3.2: An incidence graph.

Future research along these lines will probably concern various optimal partition.
ing schemes, based on the coupling between subproblems and the level of computation
nceded to obtlain subproblem solutions. Some good references on incidence graphs
are [Ros70, Bun76, Tar76).

3.2.2 Arc Index Sets

(g, ) = (R,,C.)

Recall from the Subproblem Interface Theorem that we need only pass a selection of
a subproblem’s solution over any given arc. The selection is made the arc’s index set.

We represent these sets as follows:
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e il ais a vertical are (up or down), it has a row coupling index set R, and
e il ais a horizontal arc (left or right), it has a column coupling index set C,.

This means that cither rows couple partitioned columns or columns couple partitioned
rows. An arc is represented by two nodes. Thus arc index sets will have two nodes
as subscripts. Node index sets have only one node for a subscript.

Let the arc (ny na) be horizontal; then

Rayny = {k:V paths jklin the graph b,k € (Ra, NR.,),7 € Cpy L € Crp )
Let the arc (ny na) be vertical; then
Cuymy = {J : V paths ijk in the graph I, j € (Cu, NChy) U s,i € Ry k € Ry, ).

Sccondly, the theorem says that according to given interfaces, the objective (right-
hand side) values must appear in Lthe topmost (leftmost) subproblems containing con-
strained variables (non-vacuous constraints), respectively. When a topmost subprob-
lem has unconstrained variables or a leftmost subproblem has vacuous constraints,
the theorem also says that an incoming up or left arc, respectively, carries the value
of ¢’z or 77, respectively.

To determine in general whether an up arc ought to carry ¢’ along with  and

whether a left arc ought to carry #%b along with %, follow the simple rules:

1. up arcs carry ¢’z if there are objective coefficients in the formulation of a sub-

problem below, and

2. left arcs carry #70 if there are right-hand side coefficients included in the for-

mulation of a subproblem to the right.

In other words:
if Toyny = up, and Inz < ng s.l. ¢4,y(5) = ¢; for some j € C,,,

then Cpyng = Coyng U s.
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Left ares will carcy 8 if there are right-hand side coefficients included in the formula-

tion of a subproblem to the right:
if Toyny = left, and 3ny < na sk, by, (1) = b; for some i € Ry

then Rpyny = Ruyny U0

3.2.3 Partition Graph Description

Partition graphs identify implicit subproblems created by cross-nesting the decom-
position operators. They are used to designate what information must be syachro-
nized by determining how )\, 0,1, and ¢ are indexed. The solutions of subproblems
corresponding to the nodes in a partition graph define the solution to an implicit
subproblem. One that is not solved cxplicitly because it was decomposed. Before

formally introducing the partition graph, we first define the following three graphs:
a vertical graph is a graph with all vertical arcs,
a horizontal graph is a graph with all horizontal arcs, and

a subgraph is a graph s = (A4,,V,), written s C g where g = (A, N), if and only if
N, CNand A, C AN

The information contained in the communication network g is used to generate
its set of partition graphs 7, and their accompanying row and column index sets R,
and C,, for all p € P,:

9 (PuTRpCy) VYneN,a€Adpe,

where ) . .
P, is the set of all partition graphs in g,
R, is the row index set for partition graph p € P,, and

C, is the column index set for partition graph p € P,.
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Definition 3.1 (Partition Graph) A partilion graph p is a horizontal or verlical
subgraph of g crealed by cross nesling onc operalor within another. The partilion
graphs of the communicalion network g are conlained in the set P,. Fach graph p is

a collection of nodes N, connccled by arcs A,.

For all p = (A}, A,) € Py we define row and column index sets to be the union of
the node index sets contained in the graph:

Rp= U R G= U Ca
né\y neN,

Lemma 3.2 (Partition Graph Ordering) Therc is a partial ordering on the par-
tition graphs Py of a given nelwork g € GV, based on the highest ordered node con-

taincd within them.

Proof: There is an ordering on the nodes, and all partition graphs are maximally
connected on horizontal or vertical arcs. Therefore, no partition graph can be a
subgraph of another, and there must be a node in cach that is of greatest order. Such

nodes from different partition geaphs are different and in turn partially ordered. 1

Iere are two propertics of partition graphs.

Property 3.3 (Similar Rows or Columns) If p is a horizontal partition graph,
Rn is conslant for all n @ N,. Likewise, if p is a verlical partition graph, C, is
conslant for all n € N,

Property 3.4 (Parent/Child Incidence) If p and ¢ ure partition graphs and p is
the parent of ¢, then if p is verlical, C, = C. and R, = Ry, where n = N, NN,
Likewise, if p is horizontal, Ry, = R, and C. = Cp, where n = N, NA.

Take as an example, the application of @ on the bottom node of the D-W network
gp. The two partition graphs from that network are displayed in Figure 3.3. Their

row and column index sets are

Ry, =@ Umy, Ry =m,
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P oo

Py P

Figure 3.3: Partition graphs from splitting the bottom node.

Cp=z, Cy=1z.

The information carried by the up ares from pa Lo node 1 must be synchronized and
added to (2.9) as a single colurnn. When formulating this subproblem, we purposely

included a single sct of variables I with which to take combinations of these columns.

3.3 Forming Subproblems

\Ve concern ourselves now with a philosophical question on the information contained

in a lincar program specification, and how to obtain that information from a commu-

nication network in order to fully specify the subproblems used in a parailel oracle.
‘The following discussion concerns the dichotomy of structure and content. Trans-

lated to mathematics, this terms become symbols and meaning.

Definition 3.5 (Symbolic Representation) An object is represcated symbolicelly

by the members of its structure and their relations to cach other.

Lemma 3.6 (Symbolic Linear Program) A symbolic representalion of a lincar

program is conlained in R and C and an assumed standard form (3.1).

Since subproblem n a lincar program, its symbolic information consists of R, and

C, and an assumed standard form.

Theorem 3.7 (Necessary Information) The following information is required lo

obtain a solulion lo a lincar program: a symbolic representation in the form of
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row and column indices R and C for the defaull formulalion (3.1), problem data
in the form of (A, b,¢) for (8.1), and an oracle.

To define the reverse transform, the indices of each lincar program subproblem are
obtained from the communication network by identifying their names and subscripts,
and determining their dimensions. The result is a symbolic representation of cach
subproblem. Together with a description of the problem data and the simplex method,

we can perform the oracle on any subproblem.

Definition 3.8 (Symbolic Subproblems) The reverse transformation is an cz-
traction of the symbolic representation of the subproblems from the communicalion

nelwork, We define it as a two slep process:

Index Sets The subproblem index sels are defined in Tables 8.1 and 8.8 as a lrans-
lation from the node indez sels and the arcs enlering the node. Each indez has

lwo paramelers: ils subscript, and ils dimension.

Default Formulation Tables 3.2, 3.4, 8.5, and 3.6, comprise the slandard subprob-
lem formulalion, defined in lerms of the incidence belween the subproblem’s row

and column tndices. The standard subproblem formulation is sununarized in
Table 3.7.

3.3.1 The Formulation Procedure

\We follow a procedure of determining the subproblem index sets, which then deter-
mines the default formulation. From the position of a subproblem’s corresponding
node in the communication network (c.g. topmost or leftmost etc.) we can determine

the partition of the original data over the set of subproblems.

Original Variables: The variables z, and =, appear in a subproblem based on
the node index sets. If R, is not empty then =, appears. If C, is not empty then
z, appears. It is possible for one to appear and not the other. These results are

summarized in Table 3.1.
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Dimension Subscript Appears

= = n iR, £8
x C. n ifC,.#49

Table 3.1: Original variables.

Original Data: Indcpendent portions of A, b, and ¢ will be used to define subprob-

lems based on their node index sets:
An={A;;: 1 €R,,j €C,).

Lemma 2.9 (Placement of b and ¢) The right-hand side cocfficients indexed by

1 € R, for node n are placed as follows:

ba(i) = {
The objective coefficients indezed by 7 € C, for node n are placed as follows:

ealf) = {c; if n is mazimal such that (i) € Ay, for some i € R,

0 otherwise.

b; ifn is mazimal such that (i j) € Ay for some j €C,,

0 clherwise.

Proof:

1. Begin with full arc index sets and leftmost and topmost placement of b and ¢,

respectively.

o

By the Subproblem Interface Theorem, we redefine the arc index sets of those
dowin and right arcs (nn’) incident to topmost and leftmost nodes n € V and

thus move down all ¢,(j) : 7 € C — Caw, and right all b,(2) : i € R — Run.

3. For cach down arc, there is a corresponding up arc that must have its index
set augmented by o for the objective row if a node below contains any original

objective cocflicients.
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4. Steps 2 and 3 can be repeated as often as necessary to achieve the result in

Lemma 3.9.
|

Original data are indexed by the node index sets. Both the data and their indices

carry the same subscripts. These results are summarized in Table 3.2.

Indices Subscript Appears

Al ==z n R XCp #0
bl =, n if R, #£0
c| oz n i{C,#0

Table 3.2: Original data.

Incoming Arcs: The added variables and added data of a subproblem are those
other than the originals. Their appearance in the formulation is governed by the
incoming information, i.c., the incoming arcs. They form structures for handling the
information as it arrives, placing it into the formulation so that it will have the proper
effect.

An ambiguily arises here. Information transported along up (left) arcs is used
to form additional rows (columns) in the formulation. If there is more than one up
or left arc, there can be a choice as to how the information gets incorporated into
the formulation that is not specified in the communication network. That choice,
for adding columns, has to do with the number of convexity constraints to keep.
One is sufficient, but more than one will give the region being approximated greater
resolution. Our default choice will be for the latter.

When the incoming up arc has its source in a different partition graph, there
is no choice; there must be one convexity constraint for cach such partition graph.
This forces the information from cach partition graph to be coordinated into one new

column. Likewise, for left arcs the default will be to add individual constraints, and
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only when the arc’s source lies in a different partition graph will we add only one
constraint for all the information arriving from that graph.
In the following descriptions of added variables and data, we adopt the convention

that the generic incoming arc to node n is a = (ny,n).

Added Variables: All added variables are subscripted by the incoming arc that
generated them, except for the case when the source of the incemning arc is in a child
partition p. The variables A, 0, I, and ¢ should then be subscripted by p. This causes
a single primal or dual convexity constraint to be created for cach child partition as
required. Table 3.3 shows which added variables are affected by synchronization.

The dimensions K, and K, arc defined as

K, : the number of solutions broadcast by subproblem n € N,

K,: the number of solutions broadcast by partition graph p € P,

where the term broadcast refers Lo the practice of communicating a subproblem solu-

Lion over the outgoing arcs of the corresponding node.

subscript appears when incoming Dimension

A aorp left arc K,, or K,

v a down arc 1

Y a up arc Ca

w a right arc 1

0 aorp up arc 1

l aorp up ure Ky, or K,

u a right arc 1

Y a left arc R,

w a down arc 1

¢ aorp left arc 1 i

Table 3.3: Added variables.
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Added Data: These structures are generated by incoming arcs. Information car-
riecd by up and left ares is accumulaled, whereas that carried by down and right arcs
is overwrillen. ‘This important point separates standard LP decomposition from the
class of totally symmetric algorithms. One method proposed to overcome this is to
incorporate a proximal-point penalty term into the objective function {Roc76, GolS6,
BeT89). Table 3.4 shows which data are affected by synchronization. The indexing of
cach data item positions it with respect to the subproblem variables and constraints.
When an added variable is subscripted by an incoming arc, the incident data is sub-
scripted by the reverse arc. The reverse of arc a = (ny,n) is @ = (n,m). When an
added variable is subscripted by a partition graph p, the incident data % and g, are
subscripted by p also. The incident data [T and X are subscripted by the incoming
are. “The indexing then defines a single block of constraints or columns, since one is

subscripted by the arcs and the other by p.

We now offer word descriptions of the added data presented in Table 3.4:

71t the optimality indicators for the dual solutions that are passed over arc a,
g3 : the optimality indicators for the primal solutions that are passed over arc «,
II3: the translated dual solutions that are passed over arc a,

Xz :  the translaled primal solutions that are passed over arc a,

I3 1 a matrix that translates dual (primal) solutions passed over up (left) arc a.

The passed information is cither placed directly into the formulation of the destina-
tion subproblem, or incorporated into an existing structure. For down and right arcs,
only the latest solution is used. The new information is written directly over the old
and appears in the formulation as 9 or #i;. For up and left arcs, the information
is accumulated, and appears as an expandable structure in the formulation of the
destination subproblem. Each new piece of information causes the row or the column
dimension of the structure to increase by one, and so these dimensions are indexed by

the number of times the source subproblem has been solved. Specifically, for k € K,
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Subscript incoming Indexiug

Ry Py e W L et — om Oy Qn'e-p,L Plr@r

none down arc 0,s
@orc up arc 0,1
a up arc P, 1
a up arc Y,z
a down arc v,z
a down arc v,
a down arc v, w
a down a:c oW
none down arc o,t
aorc left arc At
a left arc Ay
a left arc Y
a right arc U
a right arc o, u
a right arc w,u
a right arc w,$

Table 3.4: Added data.
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and arc a = (ny,n),

ik gk = { 1k solution to ny is optimal,
0 otherwise,
Xk={zk;:iec),
Ik = (7% ;i € Re).

The following matrices are permutation matrices (not necessarily square). Their
cntries serve o translate the primal (dual) solution of an up (left) arc into the rows
(columns) of the destination that are coupled to the source. For a given vertical arc

a = (ny,n),
[ = { 1 if the 7** clement of the set R, is f,

0 otherwise.
If a is horizontal, then

i = {1 if the i*" clement of the set C, is 7,
: 0 otherwise.

Non-negativity: Variables restricted to be non-negative and others not sign re-
stricted are given in Table 3.5. The original variables z, can be either non-negative
or free. The default is free. When n is a bottommost node, z > 0 with a non-vacuous
original column. It is true that z, could be non-negative in subproblems that are not
bottommost, but. it is sufficient that the condition hold in any one subproblem. We

chose the bottommost one to guarantee that it has at least one extreme point.

Index Setting

l, >0
U, 20
Zn frecor >0
Ya free
W, free
ta free

Table 3.5: Non-negativity.
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Constraint Types: The types for constraints, whether cquality or incquality are
given in Table 3.6. There are two choices for the x, corresponding to the primal
constraints. The default is cquality. I{ n is a rightmost node, the constraint is an
incquality as shown. Similar to determining non-negativity for z,,, all =, constraints
could be incqualities but it is sufficient for only those in rightmost subproblems with

non-vacuous original constraints.

Index
Aoy Ap

Va

w
o
.
34
-
R

v v

Tn

Pa

Wa

04,0,

hiv 1

Table 3.6: Constraint types.

3.3.2 Summary

The variable and data information tables arc partially summarized in Table 3.7.
Subproblem formulations are derived from this standard form. Given a node n and
all its incoming arcs, e.g., a = (n;, n), this table will generate one subproblem in the
schema of the communication network.

The most interesting feature of Table 3.7 is its symmetry with respect to the
rclations between Dantzig-Wolfe and Benders decomposition. The Greek and Roman
symbols are interchanged by taking the transpose. Another feature to notice is that
the series of entries X'a, Ja, 1,'55, and IT; are all added data structures to handle passed
information with entries in real space, while the series of entries gz, Ja, =13, -1,
83, 9s are added structures with entries in binary space. The entries in the second
series serve as indicators of what functions their corresponding real space information

will serve, and how they will impact the subproblem formulation. Together, both
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L u, T Yo Wy L Sn
A Il Bal =10
Vg H 8 > | -0
T Ya Ay =1y =21 ba
P | Xa -3 = 0
Wa dy = | dy
0. | 37 = 1

20 >0 free/20 free free free

ga] 0 |=la| ca 0 |&| 1

Table 3.7: Template for generating subproblems.

scries are a constellation of structures bordering the original data A, like the plancts

orbiting the sun, cach bringing to bear its own fundamental force on the central mass.

3.4 The Parallel Oracle

In this section we assume that we have available to use a collection of decomposition
subproblems that are an equivalent symbolic representation of some original LP f{or-
mulation. When coupled with data values and an oracle we can obtain a solution to
the original LP.

When we finish solving a subproblem in a decomposition scheme it is well known
that any neighboring subproblem on the network is now eligible to receive the solution
for the purpose of updating its formulation. The discussion that follows comes from

a very simple idea:
Why not solve all of the neighboring subproblems at the same time?

Thus, we will modify the nested oracle, which was designed to work between two
problems (a Master and a Slave). There are two steps:
o cnlarge the set of communicable information to include interior points of the

Slave, but keep it finite, and
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o broadcast information instead of having only two-way conversations,
where we intend the term broadcast to mean that a node communicates information
over its outgoing arcs to all of its neighbors in a communication network. ‘The first
step completely blurs the distinction of Master and Slave, and the sccond suggests
using a parallel computer. The proof of the oracle is in terms of the validity of the

above-two relaxations of the nested oracle.

Definition 3.10 (Relaxed Oracle) When consulled, the relazed oracle O,(:) pro-
vides cither:

o a primal feasible point = or a dual feasible poinl 7,

¢ a feasible primal ray Z, or

o a feasible dual ray 7,
where this information is taken from a finile sel thal includes all ezlreme poinls and

cxlreme rays.

Lemma 3.11 (Relaxed Oracle) The finiteness argument for the D-W method is
nol inhibiled by a substilution of the relazed oracle O.(:) for the regular oracle O(:)
in Steps 2 and 3.

Proof: A review of that argument will show that the information communicated up
and to the left between subproblems has two essential propertics:
o the information comes from a finite set;

o the finite set includes all extreme points and rays.

Lemma 3.12 (Broadcasting Information) The practice of broadcasting subprob-

lem solutions does not inhibit finite convergence of the D-W melhod.

Proof: The proof is simple. Broadcasting does not alter the set of communicable

information when the relaxed oracle is used. E
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The following is a corollary to the Reverse Transform Theorem that will be referred

to for direction in the Parallel Oracle.

Corollary 3.13 (Subproblem Modifications) Arc types govern the types of mod-
ifications madc Lo their destination subproblems as follows:
up arc add a column,
down arc modify the objective funclion,
left arc add a row,

right arc modify the right-hand side.

The Overall Solution Lemma tells how the solution of (3.1) is constructed from

the individual subproblem solutions.

Lemma 3.14 (Overall Solution) The primal and dual solutions (z,%) to (3.1) are
f= U %py, and T = U T
neN n€ENy

where Ny, are the leftmost nodes of g and Ny are its topmost nodes.
Proof: By induction on the levels of partition graphs.

1. The lemma is true for any vertical or horizontal partition graph:
e The lemma is true for the D-W and Benders Methods.
e Assume the lemma is true for a partition graph with [ levels.
o Use D-W or Benders method on the rightmost or bottommost two sub-
problems of a partition graph with [ + 1 levels and reduce the number of

levels to .
2. Assume the lemma is true for [ levels of partition graphs.

3. If another level of partition graphs is added to the network, it will be to the

right or below, leaving the solution still at the top and leftmost nodes. So the

lemma must be true for | 4 1 nodes also.
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The statement of the parallel oracle is based on the premisc of independent work
units we will call jobs. Our work units are modifying and solving subproblems, so there
is a onc-to-once correspondence between jobs and subproblems. Jobs are submitted to
be serviced by any processor, and held pending until one becomes available, We use
the term non-pending in the theorem to refer to those jobs that are not waiting to be

processed; cither running or not submitted.

Theorem 3.15 (Parallel Oracle) This procedure performs O(3.1):

1. Formulale all of the subproblems {1,...,N} and submit a job for cach one.

2. Repeat the following unlil there are no more jobs:
o Gel a job with ils associaled subproblem n.
o Use the Subproblem Modification Lemma to determine whal modifications
to make to the subproblem based on any new information.
o Consull the oracle O(n).
o [fthe oracle does not repeat the same solulion then broadcast it and submil

a job for cach non-pending neighbor.

Proof: We nced to show that solutions provided by O(:) for any subproblem will
salisfy the restrictions for information passed over arcs. These restrictions are defined
by nesting the relaxed oracle O,. The proof is by induction on the number of levels

of partition graphs.

1. Information passed up and left from one parlition graph to another satisfies
O.(:):
s The oracle-provided solution to a D-W Master problem always satisfies the
conditions for the relaxed oracle.
o Assume that for vertical partition graphs with [ levels that oracle provided

solution of the topmost node satisfies the conditions for the relaxed oracle.
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-1
~3

e Take a vertical pactition graph with {4 1 levels. The non-topmost nodes
implicitly represent a D-\V Slave problem and they themselves satisfy the
rclaxed oracle by the induction step. The topmost node must also satisfy
the relaxed oracle by the Master/Slave relation and by the fact that a top

node in a two-node scheme also satisfies the relaxed oracle.

Take the dual of the above argument to prove the casc for left arcs.

!0

Assume the leama is true for { levels of partition graphs.

3. Take a nctwork with ! + 1 levels of partition graphs, where the first one is
vertical. The second-level graphs provide solutions to the first level that satisly
the relaxed oracle by the induction step. By Step 1, the first level must also,
and thus all [+ 1 levels.

This chapter has been an outline of how to implement parallel decomposition
from start to finish. We assumed that the work of defining a communication network
was alrcady done, and that the remainder of the work was to form subproblems and
exccute the parallel oracle. One subtle point was made in the Overall Solution Lemma,
and that is that it is a relatively simple matter Lo construct the overall solutions. By
more traditional methods, this is often a tricky exercise in duta management.

Finally, the simple loop of: Listen, Modify, Evaluate, and Broadcast is our gerbil
on a treadmill, which together with many others like it, are more powerful than the
strongest workhorse; and faster too. We will see this conclusion supported in the

results of the next chapter.




Chapter 4

Results for Staircase Linear

Programs

OES parallel decomposition make effective use of the machine it is designed

to exploit? A Fortran77 program which solves Staircase Lincar Programs
- was written to find a practical answer to this question. This code has run
on lwo different shared-memory multiprocessing computers: a Sequent Balance 8000,
and an IBM 3090/G00LE. Preliminary results on the Sequent computer were reported
in [Ent88). More extensive results on the IBM 3090 will be reported here. The parallel
algorithm is inherently message based. As a result, the shared-memory implemen-
tation actually simulates a message-passing/distributed-memory parallel computer,

esing the Intel iPSC subroutine library as a standard interface.

Naturally, the decomposition code must solve linear program subproblems. This
is accomplished by calling MINOS 5.1 [MS87] as a subroutine [Ent87]. Likewise, the
best comparison of the decomposition method is to solve the same test problems us-
ing MINOS as a stand-alone system. This approach allowed many implementation
differences to be eliminated, and permitied the merits of decomposition and paral-
lel decomposition alone to be discussed. The tests of the decomposition code were

designed to:

78
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produce results from which to judge the merits of parallel decomposition,

investigate the algorithm’s performance under different parameter scttings,

provide performance extrapoiations outside the set of test problems, and

outline the eurrent limitations of the code and arcas for improvement.

Emphasis is placed on demonstrating that decomposition and added processors
provide faster solutions, with acceptable accuracy.

Our presentation of computational results is based on the suggested standards of
[CDM79] and [JBNP89). In addition, several similar presentations were considered,
including [HicS2, JILS1b). Section 4.1 covers the theorctical basis of the computer
code, and its software implementation. Section 4.2 gives details of the experimental
apparatus and presents results that support the appropriatencss of parallel decom-
position on staircase problems. Finally, the conclusions section argues the case for

parallel decomposition in general and traces dircctions for future work in the ficld.

4.1 General Information

Method: Staircase subproblems were formed and solved on an “as available” basis
using p processors. Subproblems are considered available when they have just received
new information from an adjacent node on the network. When a subproblem finishes
optimal, both the primal and dual solutions are communicated. When infeasible,
only the dual solution is broadcast, and when unbounded, only the primal solution
is broadcast. No dual optimal solution can be sent until one has been received,
except for rightmost subproblems. As a result, the Phase | algorithm (for obtaining a
primal feasible solution) is a serial one. Computational results exhibit this property.
Also, the results show parallel decomposition outperforming the simplex method on

problems having more than 2000 nonzero entries.
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a2

aY
o—

nl n n+l

Figure 4.1: Dimensions of a step.

Memory Space: The size of the Fortran code and the amount of memory required

for data storage are parameterized in the following terms:

N = # subproblems (max N is ¥ = 51),

p = # processors (max p is p = 20),

ra = # coupling rows for arc a (max r, is 7, = 300),
rn = # nonzero rows in n's partition of A — r(a a4,
¢n = # columns in n’s partition of A,

¢, = # nonzcros in n's partition of A,

Fn = # rows in subproblem n,

Ca = # columns in subproblem n, and

. = # nonzeros in subproblem n.

The maximum values for N, p and r, are given for the test configuration. Figure 4.1
represents the pattern of nonzero coefficients near the nth partition. The lengths of
the bold lines show the dimensions of r,,, ry .41, and ¢, for this partition. Closed-form

cquations for the subproblem dimensions (7, ¢,, €,) are

= ot Tanet + Mot
Cn *F Tan+l,

—_ en + rz'"+l + 27‘,,,._].

Tn
Cn
£n
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Given the values of iV, 7, Gy, €, an cxpression for the total amount of shared memory

used by the program can be calcuiated as

# bytes = 496N + 16p + 16N 7 +8 3 (En(1.25 + 4.57, [En) + 17.5F, + 6.758,).

Software: The computer code presented here is based on MINOS 5.1. It uses
MINOS in its entirety, with a few extra routines spliced in here and there. MINOS
consists of three basic modules: Input, Solve, and Output. The parallel decomposition
algorithm has two additional modules. The first, Form Subs, is inserted after the
MINOS Input module, and the second, Process Subs, governs parallel MINOS Solves
and decomposition message handling. In addition, a small amount of extra work is
involved in collating the many subproblem solutions into one overall solution before

they are Qutput. Thus, the Input/Output work is slightly greater for decomposition.

MPS and SPECS Input Files: These files are input using the MINOS Input
Module. The standard MPS file is input to determine the Problem Data. It is
assumed that this MPS file describes an LP that has a block diagonal or staircase
structure. Normal MINOS input files are sufficient to sclve the LP as a single large
problem. Iowever, to decompose a block diagonal structure into n subproblems,
additional information must be provided in the DSPECS file.

DSPECS Input File: This file contains the additional information needed to com-

plete a staircase decomposition linear program. An example of such a file is:

0 Debugging Parameter
50 % of extra rows to add to cach subproblem
100 % of extra columas to add to cach subproblem
3 number of subproblems

20 30 number of rows and columns in the firsv subproblem (optional)

20 30 number of rows and columns in the second subproblem (optional)

20 30 number of rows and columns in the third subproblem (optional)
4 number of processors (actually specified in JCL)
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Since this is strictly Benders decomposition on a staircase system, the number of sub-
problems N equals the number of nodes, and M = {1,..., N}, A= {(1,2),{2,1),...,
(N=1,N),(N,N=1)}, Ta =left, il a = (n,n=1) for some n € N, and T, = right, if
a = (n—1,n) for some n € . This means that the entire communication network is
defined in terms of N and |C,], Vn € V. The sets R, and C, arc well deiined given
the number of columns in cach partition and the fact that the elements of R and C

are ordered.

Qutput Files: Each processor has a standard Fortran output file, and therefore the
MINOS-type iteration log of cach subproblem solved by cach processor will appear
in the corresponding file. In addition, the root process appends decomposition and
parallel computation summary statistics, and the overall LP solution in its standard
output fle. The solution has the same format as MINOS. Finally, one short summary

file is written by the root prozoss that also contains the summary statistics.

Forming Subproblems

‘The serial version of this module was first documented in [Ent87). Chapter 3 described
for the most general case, how to form subproblems. The staircase version implicitly

assumes a specific communication graph as in Figure 4.2 and that no row or column

Figure 4.2: Lincar communication network for staircase pattern.

permutations are necessary to obtain a staircase pattern in A. Before the Form
Subs step, the subproblems are dimensioned based on these implicit assumptions. No
intermediate information, as outlined in Chapter 3, need be used. A simple heuristic

is used to provide subproblem dimensions. The object of the heuristic is to partition
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the ordered columns of the matrix into a user-specified number of sets n. The columns
in cach set are adjacent, and they are chosen so as to minimize the number of coupling
rows between the columns of adjacent sets. First a profile function f(-) : C = R is

calculated, where
fG) = )_é?%:lcq{z ER: Ay #0) - ‘rsr}i'rsl)_{z ER: Ay #0}.

Then N —1 local minima are found so that the distances between them are nearly
the same. It is also desirable to get the local minima as small as possible. If the
problem has not cnough steps to supply N subproblems, a warning is printed, and

the number of steps found is used.

Processing Subproblems

Wlien the solution of a neighboring subproblem arrives at the mailbox of a given
subproblem, an independent job is defined. (Independence between jobs means that
they can be executed concurrently.) Messages from different subproblems can be

handled by a single job as described in Table 4.1.

Receive Message(s)
Make Modification(s)
Perform Oracle
Broadcast Solution
Die

Tabie 4.1: The life of a job.

Jobs are serviced, in the order they were made available, by any available proces-
sors. Messages from different subproblems can be handled by a single job as described
in Table 4.1, which lists the four associated steps. The first round of jobs may skip

the first two steps if there are no messages to receive.
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Since this is an implementation of Benders decomposition, if a primal solution
is received, the RIS is modified. If a dual solution is rececived, a new constraint is
added.

The oracle is performed by a subroutine call to the Solve Module of MINOS. A
pointer, passed as a parameter, dirccts MINOS to the proper data sct, and in return,
some solution form is provided according to the oracle'’s definition.

Different information is broadcast under the differing exit conditions of the Solve

Module.

When optimal, the primal extreme point is passed aver an outgoing right arc (if
one exists), and the dual extreme point is passed over an outgoing left arc (if one
exists) only if there is alrcady an extreme point in the present subproblem’s extra
constraints, or it is rightmost. This guarantees dual feasibility of the information

passed on left arcs.

m unbounded, in addition to the primal extreme ray, a primal extreme point
adcast over an outgoing right arc (if it exists). Since MINOS is an implementa-

tion of the simplex method, the extreme point is available and used.

When infeasible, the dual extreme ray is passed left. In this situation, the par-
allel decomposition algorithm is actually serial, beczuse only one new job is created
from that finishing. Some test problems spend much of the time with infeasible sub-
. voblems. An extreme example is SC205, which has only a single nonzero objective
cocflicient in the leftmost, subproblem. This makes all but the leftmost subproblem
feasibility problems: we ueed only find a feasible point because the objective is vac-
uous. The decomposition algorithm can be made parallel by passing an infeasible
primal solution to the right, but this information must not be relied on as part of an

overall solution. At the time of this writing, we have yet to implement this feature.
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Convergence and the Termination Criterion

Dual solutions are extreme points of the dual feasible region of the neighber and
therefore finite in number. If a dual solution corresponds to a non-binding constraint,
the job is not exccuted. Eventually, no new jobs will be created; at this point, an
optimal solution has been found.

To test whether a constraini will be binding, the objective value of the subproblem
na that sent the dual extreme point is compared with the value of the variable £, in
subproblem n; where @ = (ng,n;) is the arc that carried the message. Since ¢, is a

lower bound on the value of z,,, if
Zny = ta < lol,

then the constraint will be non-binding. The value of tol is the default feasibility
tolerance used by MINOS.

Discarding Constraints

Tynically, a large number of constraints will be added to a given subproblem. Iow-
ever, not all of them are necessary to obtain an optimal solution. At most |R,| can
be binding at the final solution. We actually keep |R,| + 2 for good measure. The
decomposition code overwrites the added constraints that are no longer binding. It

replaces the constraint that has been slack for the greatest number of solves.

Communication

Messages contain a quantity of information that is a function of the number of cou-
pling constraints r, between the communicating subproblems. Table 4.2 gives the
l2ngths of cach message type in bytes. The maximum message length is 16+ (34-86) =
1424 bytes for all the test problems.

Sending a message involves loading it into a buffer and copying the buffer into the

proper mailbox. Receiving a message involves copying it from the proper mailbox
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Message Bytes
Primal Point 8%(3+r.)
Primal Poinl and Ray 16 * (3 + r,)
Dual Point or Ray 8x(4+r,)

Table 4.2: Message sizes.

into a buffer. Subproblems have one mailbox for cach incoming arc. Each mailbox
is capable of holding only ouc message. If a new inessage arrives before the old
onc is read, the old one is discarded. Discarding messages in this fashion does not
affect finite convergence (but according to [HSL8S), it is possible for such retained

information to be used to speed convergence).

Basis Factorization

MINOS maintains a basis factorization that 1s updated by the decomposition code as
appropriate after each modification to a subproblem. The routines for this purpose are
in the software package called LUSOL and are documented in [GMSWS§6). As a result
of making both row and coluinn updates, the factorization needs to be recalculated
only when it becomes inaccurate or too large. The default settings from MINOS are

used to govern refactorization.

4.2 Testing

The following experiments were performed to test the performance of parallel decom-
position algorithms. A test suite of twenty-iwo staircase linear programs were solved
with different partitions and different numbess of processors. The conclusions are
that the algorithm is consistently well bchaved in its use of additional processors and

that it outperforms the serial algorithm (the simplex method) in most cases, when

using only four processors.
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4.2.1 The Test Environment

We report the test environment so that the interested reader may reproduce the same

conditions on a varicty of parallel machincs.

Language
Compiler
Compiler Options

Computer

Opecrating System

Code + Local Common
Shared System Common
Shared Data Common
Total Shared Common
Total Memory
Tolerances

Message Passing

Job Flow Control

Fortran 77 with IBM Parallel Fortran Extensions
IBM Parallel VS Fortran with VS Fortran V2 Rel 1.1
No Vector, No Parallel, Optimize Level 3,
Dynamic Shared Common

IBM 3090/GO0E,

2Gbytes shared virtual memory, and

128Mbytes real extended memory.

MVS/XA v2.2.0

0.62 Mbytes

0.27 Mbytes

1.60 Mbytes

1.87 Mbytes

2.49 Mbytes

MINOS Defaults

w/o locks

with locks

“The processors were aligned after dispatch with a barrier.

4.2.2 The Test Suite

All but three of the twenty-two staircase-linear-program test problems were chosen

from a collection of fifty-three used by Lustig [Lus87] in a performance evaluation of

the simplex method. Included in his report are pictures of the patterns of nonzeros

for the test suite: sce Appendix B.

Table 4.3 lists the LP dimensions for the test suite. The problems are ordered

by the number of nonzeros. All but three are part of a set of test problems made

available by Gay [Gay85] and distributed over netlib [DG87). The DIET series of test
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Prob.# ProbName Rows Cols Elems Obg. Value (ne(lib)( Netlib #

- |DIETZ 12 a8[ 1. K1 NA
2 |DIET3 8 18 72| 2.7750000000000E+02] N/A
3 |DIET?7 15 42 168] 6.4750000000000E+02] N/A
3 [SC203 K 203 S-S 20082 TTT0TEROI| 13T
5 |SCAGR7 130 14 553| -2.3313892547843E406| 17
6 |SCORPION 389 358 1744] 1.878124822738iE403] 21f
T {SCACKS .y ) 13T ATI0G0TEOER07] 1o
8 |SCTAPI 301 48 2052} 1.4122500000000E+03| 26f
9 |SCFXMI 331 457 2612] 1.8416759028349E+04] 18f
10 |GROWT 1 301 2633 . TT8IBIIBIATINESDT[ 8T |
1t |scspl 78 7 3148 8.6666666743334E400| 23f
12 |STAIR 357 467 3857] -2.5126695119000E+02] 11
I3 |SCRSE .0 HZJ_mva 220
14 [PILOT4 411 1000{ 5145/ -2.5810162253381E+03] 11f
|15 [SCFXM2 661 914 5229] 3.6660261564999E+04] 19
1§ |GROWTS 301 & 3663[ -1.068 7093 129338E+ o7
17 |SCSDé6 148 135 5666 5.0500000078262E+01] 24f
18 |SCFXM3 991 1371 7846] 5.4901254549751E+04!  20f
19 |SCTAP2 109 T80 8124| 1.72480713283571EX03| 21T
20 |GROW22 441 946/ 8318] -1.5083433648256E+08]  10f
21 |SCIAP3 T48]1] 10733 1.3240000000000E+03[ 281
22 |SCSD8 398 27?3 11334] 9.0499999992540E+02| 25f

Table 4.3: Test problem dimensions.
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problems was created from an example in [Chv83] and documented in [Eat88). It
was originally intended for debugging purposes. The optimal objective values for the
problems as reported by Gay (excluding the DIET series) are included in the table.

Problem  Prob Name ol Min Max Min Max Min Max
Number 1 # Subs Steps Rows  Rows Cols Cols  Couple Couple

| D122 d 2 J 0 [ 1 ]
2 DIET33 3 2 3 6 6 1 1
3 DIET/7 7 2 3 6 & 1 1
g & L203/1 1 11 1 11 14 b B
5 SCAGRI? 7 9 26 13 27 6 7
6 SCORPION/6 6 Kl 93 3] 66 27 49
i SCAGRI/ZS 2 19 20 13 ) 1

8 SCTAPINO 10 Kl 30 48 48 18 18
9 SCEXMIM 4 66 92 99 126 5 9
10 JGROW//I U 20 0 4 43 20 - 20
H SCsDIA 3 20 3 190 380, 10 100
12 STAIR/6 6 38 103 (i 96, 46 51
13 SURSH/! 14 M 6/ 330 440 10 10,
14 PILOTY 4 61 154 248 252 133 154
15 SCFXM2/8 § 66 92 99 126 5 9
16 GROWIL5/15 1D 20 43 4] 20 20
17 SCSD&/6 7 20 20 190 210 10 10§
18 SCFXM3/12 12 66 92 99 126 5 9
19 SCTAPHIU 10 10 1 15 15 ol 0.
20 GROW2%7%2 22 20 20 43 43 20 204
21 SCTAPINO 10 143 143 24} 248 80 50
22 SCSD8s7 39 10, 17 70 90 10 10§

‘able 4.4: Test problem step dimensions.

Table 4.4 contains the staircase dimensions for each of the test problems. The
default nuinber of subproblems created is listed along with the number of steps in
the staircase. The minimum and maximum dimensions of each step are given, along

with the coupling between adjacent steps as described earlier in Figure 4.1.

4.2.3 Test Designs and Results

The physical properties power, work and time are excellent terms to describe the
performance of a parallel algorithm. In the computing environment, the unit of
power is a CPU, the unit of work is a CPU second, and the unit of time a second

as measured with a wall clock. One can view work, or CPU time, as the rent paid
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for use of the computer. The absolute performance measure, however, is usually the

clapsed time needed to obtain a solulion.

W MINOS M DicoMP DEcoMPR2 [0 DEcoOMPA [ DECOMP/M

TAEeT a0
™~
hy

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22
Test Problems

Figure 4.3: Used CPU power for each test problem.

Power: A good parallel algorithm has two properties. First, it makes efficient use
of the CPU power. When two CPUs are madce available, both are actually used. Most
algorithms do not achieve perfect efficiency. Eighty percent is often considered very
good. Figure 4.3 displays the average CPU power applied to solve cach test problem
when decomposed into the default number of subproblems given in Table 4.4. It shows
that algorithm has little trouble utilizing more CPU power, especially on the larger
problems. Of course there is a limit. Remember that at most N — 1 processors can
be kept busy by the algorithm, where & is the number of nodes/subproblems. These
experiments were run with at most four CPUs because although the 30Y0/600E has
six, it cannot cffectively offer more than four CPUs in a mulli-user environment.
There are no decomposition results for problems SCAGR25, STAIR and PILOT4
because dual-degencracy prevented progress and a primal feasible solution was not

obtained.
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Notice also that the used CPU power for problem SC205 is at or near one regardless
of p, because in this case the computer spends most of its time obtaining a primal
feasible solution. At the time of writing, the Phase 1 algorithm is scrial, and orly one
CPU is used despite the availability of more. In fact SC205 has a vacuous objective
row for all but the first step in the staircase. As soon as a feasible point is found, it is
the optimal one. The Phase 1 algorithm could be made parallel by passing infeasible

primal solutions to the right, but this has not yet been done.

| 2 3 e P Processor Indices
—l— Resd Deta
i
J be
: Form Su B Work dooe serlally
: B Wk in paralicl
d
T O Processoe Jdling
I Process Subs
m .
p :
Optimality (Equilibei
Dt (Fauitbeism)
Priat Solutlon

Figure 4.4: Strings of work.

Useful Work and Idle Time: Figure 4.4 will help us understand how the data
for Figure 4.3 and all subsequent figures were collected. The solid lines in the figure
represent uscful serial work doing input and output. These times are ignored. The
only times reported are those for the parallel phase, which represents a majority of
the work done, especially for large problems.

After data is read from disk, the work fans out to p independent strings of work
with one barricr between the Form Subs and Process Subs steps. The parallel lines in
Figure 3.1 are shaded grey with intermittent white sections. This is to represent useful

and idle work time. Useful work is spent forming and solving subproblems, whereas
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idle work is spent counting. In the multi-user environment on the IBM 3090/600E,
it is important to “waste Lime” counting because we must know how much idle time
is really being used. It must be measured somehow. A production code would not
do this. Idle time would be filled with useful work from other user’s jobs. Counting
idle time degrades performance at the expense of simulating a “gencric™ computing

cnvironment.

‘The CPU power in Figure 4.3 is the ratio of uscful work (total length of all the
grey lines) to the total work (lotal length of the grey and white lines). It is a measure

of the cffective CPU power applied to solving the problem.

A sccond aspect of collecting CPU times needs to be reported. Each parallel
string of work is implemented as a series of MVS operating system tasks, the number
of which is not predetermined. Partly because of this, the IBM Parallel Fortran
Compiler has no facility for collecting individual CPU times. An assembler language

routine for collecting MVS task times was used instead.

On every call to the Parallel Fortran Library the MVS task may change. This
has been likened to taking a sequence of taxis to travel to some destination. Street
intersections represent library calls. You never know when you will change taxis, so
to ensure payment, you make installments for cach block driven. The time spent
crossing intersections is not recorded. Likewise, the MVS task time is recorded be-
tween subroutine calls, but the time spent in the subroutine library is not recorded,
and causes a 10% to 15% shortfall in the total CPU time reported for the largest
test problem SCSDS; sce Table 4.5. ‘The unaccounted time falls into the idle-work
category because the library routines are called only when 2 precessor is trying to find
something to do besides count. For this reason, the clocks on each Fortran Processor
arc used to measure only useful work, while a job clock measures the total length of
all the parallel strings. The difference between the sum of the processor clocks anc

the job clock is attributed to idle work.
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Problem Real My Percent
Name CPU CPU Error

[SCTSDE2 15,32 14,106 8
SCSD8/3 12.74 11.569 9%
SCSD8/4 12.78 11.587 9%
'SCSDBS 1031 U.593 %
SCSD8/6 12.13 10.908 10%
SCSDgr1 10.72 9471 12%
SCSDE/B 13.58 12312 Y%
SCSD8A 973 8.488 13%
SCSD8/10 10.97 9.708 12%

CSDE/1Y 11.59 10.258 1%
SCSD8/12 11.42 10.072 12%
SCSD8/13 10.89 9.575 12%
SCSDENA 10.71 9377 12%
SCSD8/39 31.55 28.967 8%

Table 4.5: Shortfalls in measuring work.

Another set of runs were exccuted with and without the processor clocks, pro-
viding a very sensible illustration of the Heisenberg Principle. You cannot measure
performance withoul affecting it.

Job CPU times are reported in Table 4.5. SCSDS was solved multiple times for
n =11 and p = 1,4 both with and without the processor clocks. Two percent faster
times were obtained without the clocks when using only one processor, and four
percent slower times were obtained without the clocks when using four processors.
We can expect a similar effect for other test problems.

Two speculations have been offered to support the variations caused by alling
the clocks. The first is that part of the excess time is getting lost by the operating
system during the system clock calls [Wel89). The other is that the operating system
is using the clock calls as opportunities to interrupt the processor [For89). A system
interrupt would appear beneficial in that it would most likely be interrupting idle
work time.

Finally, we can see from Figure 4.5 that the total work required to solve a problem

is not deterministic. The same program configuration was run several times with
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waSonNw e

Iw 1w lw/olwjo 4w 4w 4w 4w 4dw/odw/odw/odw/o
With and Without Clock Calls
(p=1,4)

Figure 4.5: The Heisenberg Principle.

different rasults. Ience, the reported times are the average of up lo three successive

runs.

Work: The sccond property of a good parallel algorithm is that the total work does
not increase as the number of processors increases. Figure 4.6 gives the total parallel
work done on cach test problem using both MINOS and DECOMP (p = 1,2,3,4).
Notice that the work actually decreases from p =1 to p = 2 for problem 13. This is
possible because there is no control over the path taken to the solution, and different
paths can be taken {or different numbers of processors. The conclusion to be drawn
from these results is that the total work does not substantially increase as the number

of processors increases.

Time: Together with the effective use of CPU power, we obtain respectable reduc-
tions in elapsed times to solve the test problems, as shown in Figure 4.7. We have

used a log scale for this figure because of the great disparity in time required to solve
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Figure 4.6: Work required to solve cach test problam.
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Figure 4.7: Time required to solve cach test problem,
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the small and the large problems. A more effective presentation is made by normal-
izing the scale for cach tes problem. In Figure 4.8, the times of cach individual test
problem have been normalized by the time used by MINOS. The result is called the
“Speedup over MINOS." In this case, a value of 2 would mean that the decomposition
algorithm found the solution twice as fast as MINOS. The figure shows that parallel

decomposition is consistently better than the simplex method on the larger problems.

W MINOS B pecomp/i W pEcoMpr [0 DEcOoMPA [ DECOMP/A

S 100.00
P
e o
e v 10.00
d e
ur
P
M
F 1
a N
c O
t S
0
r 0.01

1 2 34 5 6 7 8 9 1011 121314151617 1819 2021 22
Test Problems

Figure 4.8: Speedup over MINOS for cachi test problem.

Speedups: There are two benefits derived from parallel decomposition that give
such speedups. The first is that for the larger problems, decomposition alone (p = 1)
has offered a speedup. For instance, problem 21 (SCTAP3) is solved 10.5 times faster
just because of a change of algorithm.

The second benefit, naturally, is derived from using more CPU power. Figure 4.9
is a display of elapsed times that were normalized by the time used by DECOMP/1
for each test problem. With this perspective, we can effectively judge the benefits
of adding processors. Notice that for problem 21, the computation was sped up
by an additional factor of 1.6 over DECOMP/1 because of the addition of three
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Figure 4.9: Speedup over DECOMP/1 for cach test problem.

CPUs of power for a total for four CPUs. The overall benefit provided by parallel

decomposition with four processors was a factor of 16.8 speedup as seen in Figure 4.8.

The Number of Subproblems: This experiment demonstrales the increase in
overhead of decomposition as the number of subproblems increases. The largest test
problem, SCSDS, has 39 steps. If subproblems are limited to a discrete number of
steps, the number of subproblems is limited to the set {2,3,...,39}. Note also that
there are 38 ways to partition the two-subproblem case. The number of steps per
subproblem was chosen to be nearly the same in cach case.

Even though communication times are negligible, because this is a shared memory
computer, there is still a significant overhead involved in making the proper response
to all reccived messages. On the other hand, there is an uncertain benefit from solving
a staircase with decomposition. These two effects combine in this experiment. Fig-
ure 4.10 shows the total work used to solve SCSD8 when the number of subproblems

N, varies between 2 and 38 (even numbers only), and the number of processors p,

varies from one to four.
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Figure 4.10: Work to solve SCSDS8 using increasingly finer partitions.

For small N, the total work remains relatively constant—around ten CPU seconds.
The run requiring the least amount of work is for ¥ = 14 and p = 1 with 9.4 CPU
scconds. After the average size of a subproblem begins to fall below three steps, N =
13, the total work increases. This is consistent with our general observations with one
CPU, that a staircase problem with less than 2000 nonzeros is not worth decomposing,
as the decomposition overhead begins to outweigh its benefits. However, with more
processors the results are different.

The run solving the fastest overall, as seen in Figure 4.11, is V = 10, ), = 4 with
3.4 clapsed seconds. For p = 2, the minimum is 5.8 elapsed seconds with N = 10 and
12, and for p = 3 the minimum is 3.7 clapsed seconds occurring at both N = 12.

The best speedup for a fixed number of subproblems is at N = 32, with a factor
of 4.7; see Figure 4.12. However, the best serial time versus the best parallel time is
8.7/3.4 = 2.6, but this was obtained only after an exhausting search.

The trend is consistent that more processors makes decomposition faster. The

cffect of the number of processors en solution time is likely to be a function of the
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Figure 4.11: Time versus the number of subproblems for SCSDS.
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Figure 4.12: Speedup versus the number of subproblems for SCSDS.
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solver more than anything clse. Small LP subproblems are best solved with a vector-
ized tableau method. Specialized subproblems like network flows are best solved by
combinatoric algorithms. MINQS, the solver used here, performs best on medium-
sized staircase problems (relative to decomposition). Scrial solvers should be chosen

according to the size and nature of the subproblems.

The Number of Processors: ‘This is a study on the effective use of processors.
At a time when the computer was lightly loaded, SCSDS was solved using from one to
seven Fortran Processors. In IBM Parallel Fortran, a Fortran Processor is a series of
MVS Operating System tasks, so more than six may be requested for a six-processor

machine. Seven is the limit based on memory restrictions.

|l Work O Time I
40-

“oaI3c 60w

1 2 3 4 5
Processors

Figure 4.13: Work ard time versus processors for SCSDS.

Figure 4.13 is a classic speedup diagram for this problem. Here, speedup is calcu-
lated relative to the solution time for decomposition with one processor. Naturally,
the point (1,1) is represented. The diagonal line shows the ideal.

The next figure, 4.14, graphs the dichotomy of Work versus Time for varying

numbers of processors. Sharp dips in the amount of work, as for the six-processor




4.2. TESTING 101

I = Linear <4 CPU Power I

QO = N W A N

Processors

Figure 4.14: Power versus processors for SCSDS.

case, can only be attributed to good fortunc. Experiments on a dedicated machine
could scttle many uncertaintics as to the true benefactors of parallel decomposition.

At this writing, we can say only that they exist.

4.2.4 Performance Extrapolations

How will parallel decomposition perform on larger problems?

In the next two experiments, we reexamine the results for a constant number of
subproblems by grouping the test problems by family. We consider, as the problems
in a family get larger, how parallel decomposition should perform on cven larger

problems.

Extending the Staircase: This is the first of two discussions regarding extrap-
olation of the results beyond the test suite. One way to make a staircase problem
larger is to add more steps. This means that either the planning horizon is length-

ened or it is represented in finer detail. There are three such series in our test suite:
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Figure 4.15: Speedup over DECOMP/1 for extending staircases.

DIET, GROW, and SCSD. The speedup results from Figure 4.9 are reproduced in
Figure 4.15 for the latter two only, since the LPs of the DIET series are too small. We
sce that as the length of the staircase extends, the parallel algorithin’s performance

is not degraded.

Model Complexity: Another method of increasing the size of staircase problems
is to add more complexity to the model,i.c., to disaggregate. For instance, “dairy
products” becomes milk, cheese, yogurt and ice cream. Adding complexity allows a
model to give a more detailed solution, and the modeler to address interactions more
specifically. £ summer risc in the price of the aggregate “dairy products” may only
be a reflection of more demand for ice cream!

The SCTAP scries of problems keep the same number of steps, but increase the
number of rows, corumns and nonzeros per step. Figure 4.16 is a reproduction of
the elapsed times for this series. It shows that the simplex method has increasing

difficulty with this problem, while the performance of the parallel decomposition

algorithm does not degrade.
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Figure 4.16: Speedup uver DECOMP/1 for more complex staircases.

4.3 Conclusions

We have taken a long tour through the space of all communication networks, but
the experience has created surgeons from interns. What we slice apart is more than
just a lincar program. It is a modeler’s presentation of some small part of the world.
The picces and their interactions can now be observed from a new perspective: as a
network of communicating entities. The communication is structured and directed
toward obtaining a consensus via local agreements. How can communication patterns
be studied? Are their optimal configurations based on a modeler’s knowledge of the
natural configurat ,n? What are the strong and the weak links? These are probing

questions to answer with further investigation.

The main conclusion to make about the computational results is that if serial de-
composition does well on a given problem then parallel decomposition does also. This
is not surprising, but what we have also seen is that even when serial decomposition

is slow, parallel decomposition can still be made to solve proolems faster than the
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simplex method by adding more processors. In general, adding more processors will
help, but there is a limit.

An important accomplishiment is that by characterizing the oracle and the relaxed
oracle, we define an interface that allows any convenient subproblem solver to be used.
The essential part of decomposition is not how a subproblemn is solved, but the form
of its solution.

In addition, we can now see that the subproblems need not be linear programs.
Convex functions and regions ean be approximated with piece-wise linear functions
and extreme-point representations.

Finally, no practical implementation of a theoretical algorithm is perfect. Ours

needs work to make it more robust and handle ever larger problems. Lel it be our

hope that the technigues and ideas discussed here will find practical use.




Appendix A

Example Subproblem

Formulations

We now present examples of decomposition applied to three structured linear pro-
grams, and one that is unstructured. These are intended to offer a better understand-
ing of the previous sections, and serve as recommended procedures for applying the

concepts of this thesis to practical examples.

Block Diagonal: This is the simplest example for decomposition. The problem
consists of two completely independent linear programs contained in one. By
investigating the formulations of the subproblems, we find that decomposition

can impose dependencies not regularly recognized in practice.

Staircase: lere we take a staircase pattern and slice it vertically just as in the dia-
gram in the introduction of this thesis. In the final chapter, we apply the parallel

oracle to the resulling subproblems for a variety of real-world test problems.

Two-Stage Stochastic: This is our first example of cross nesting. Again, the dia-

gram in the introduction contains the anatomy and the sequence of slices used.

Dense: This nondescript structure is used to demonstrate a procedure by which the

anatomic structure is broken down to the level of a single coefficient.

105
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These examle don not make use of hte subproblem interface theorem, so for instance
a vertical arc index set is defined on the intersection of the row index sets of the

joined nodes.

A.1 Block Diagonal Example

We begin our serics of examples with the simplest block diagonal case, where the
constraints of two subproblems lie in independent spaces. The subproblems are com-
pletely independent, except that they are coupled via the objective, indexed by . In
this example there will be information passed between the subproblems, but only of

the most trivial nature.

min Szl 42t ==

x;?_o

>0

st. xt: Allz! > bt (A1)
x3: A¥z2 > 1,

As noted earlier, the names of the primal and dual variables of the Block Diagonal
Problem are used as indices for the rows and columns of the coefficient matrix A.
The block diagonal LP (A.)) has superscripts in order to differentiate the problem

data and variables {rom those of the subproblems, which will have subscripts.

Block Diagonal Problem Description:

R=x'Ux?, C=z'Uz1?
All 0 bl
A=( o A") € R®XC, b= (b’) eRR, T=( *)eR*C

Block Diagonal Communication Network Description:

W, A4) = ({1,2},{(12),(21)})

'Rl = 7\'1, Rz = w",
C=z'Uz? Cy=z'Uz?
T2 = down, Ty =up.
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Block Diagona! Incidence Graph Description:
k= ({o,7), %%, 5,28, 2%}, {(0z'), (02?), ('3), (x'z}), (=), (x*z?)}).

Recall that o and s index the objective and right-hand side, respectively.
Block Disgonal Arc Index Sets: There arc no horizontal arcs, so €2 = Cyy = z2.
Black Diagonal Partition Graphs: There is only one partition graph, so all
added variables will be indexed by their associated ares. p = (M, A), R, = R,
C,=C.
Block Dingonal Subproblem (1 € A): Node one is topmost and leftmost.

Original Variables: =, € ®® and z, € £.

Origina! Data: Ay =(A" 0), b =(8'),and cT= (! ).

Incoming Arcs: There is one incoming arc to node one, (21), and it has type

T2, = up. It determines the added variables and data.
Added Variables: [ € ®52, 0, € R, and ¢4y € R,

Added Data: 1 isindexed by (021, $;), 512 is indexed by (621, 13,), Xi2 is indexed
by (Y1, 1), and —=Iy2 is indexed by (Y21, 21).

Non-negativity: [ > 0 and z; is free.

Constraint Types: =, is a >, iy is an =, and 0y is an =,
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Formulation (1 € N):

I 1 5
L1 A {2 h
Y | X | =l | = |0
On 5;’; =11
20 free
an| 0|

Notice in the formulation for node 1 that for the dual variables, sy = ¢! because of a
dual identity with the objective row. This means that the information being passed

to node 2 is constant and equals the values of the original objective for the columns

2l

Block Diagonal Subproblem (2 € N): Node two is leftinost and not topmost.
Original Variables: =, € ®%2 and z, € R,
Original Data: A;=(0 A®), b= (8),J=(0 0).
Incoming Arcs: There is one incoming arc (12), of type Ty2 = down.
Added Variables: w;; € R and v;5 € R.

Added Data: s, is indexed by (viz2y z2), 0y, is indexed by (vi2,8), &, is indexed

by (vi2,w12), and another &y is indexed by (o2, w12).
Non-negativity: z, >0, and w;, is free.

Constraint Types: v, is > and 7, is >.
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Forr~ ‘ation (2 € N):

T2 Wy 32
via | ¥ | 6 | 2 | =0n
x2 | Az 2| b

20 free
o2 | 0 | &n

The node 2 sulzproblem will be solved only once based on the constant information
passed to it from node 1. The returned primal solution, when incorporated into Xy,
and 72 in the node-1 subproblem, will allow it to be solved in only one iteration. The

x
overall optimum is then achieved. The overall solution is (( _l) yZh).
X2

A.2 Staircase Example

‘This example differs from the previous in that it uses Benders Decomposition and
there are now coupling constraints between the partitioned columns. As a result, the

information passed over the communication network will not be so trivial.

min cdzl+ el =z

x;_>_0

x'20

s.t. x': Allg! > b (A2)

2 ANz 4 A%222 > 12,
Asin the previous example, the names of the primal and dual variables of the Staircase

Problem are used as indices for the rows and columns of the matrix A.

Staircase Preblem Description:
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Staircase Communication Network Description:

(Nv A) = ({1s2}1 {(12)!(21)})
Ri=xtUx?, Ry=x'Ux?

C| = Il, C; = 32,

Ti: = l'ight, Tn = left.

Staircase Incidence Graph Description:

h = ({o,x',x%,s,2',2%}, {(02}), (0?), (x's), (x'z"), (xs), (x*2"), (x*2?)}).

Staircase Arc Index Sets: There are no column coupling sets since there are no

vertical arcs. Ryp = Ry = x2.

Staircase Partition Graphs: There is only one partition graph, so all added
variables will be indexed by their associated arcs. p= (N, A), R, =R, and C, =C.

Staircase Subproblem (1 € A): Node one is topmost and leftmost.
Original Variables: x, € ®%, and z, inR°.
. Al B
Original Data: A, = (A”)’ b = (b’)' and T = (').

Incoming Arcs: Thereis oneincoming arcto node one and its typeis T, = left.
Added Variables: Aj;; € R52, 15 € R, and y;; € R,

Added Data: 1isindexed by (o1,121), F12 is indexed by (Aa1,t21), I1,, is indexed
by (A21,¥21), and =1 is indexed by (771:3/21)-

Non-negativity: =z, >0, and both y,, and ¢3; are free.

Constraint Types: Ay is > and m; is =.
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Formulation (1 € M):

y yn ln 3y
A Ma |72 |20
n | A |- = | Y
20 free free
0 CT 0 1

Staircase Subproblem (2 € N): Node two is topmost and not leftmost.

Original Variables: x; € %? and z, € R,

Original Data: A; = (:22) y b= (3) yand = (c?).

Incoming Arcs: There is one arc (12) incident to node one and its type is

T2 = right.
Added Variables: w;; € R, and u;; € R.

Added Data: § is indexed by (x3,u13), =iy is indexed by (o3,uy2), da; is

indexed by (w2, u)2), and another day is indexed by (w12, $2)-
Non-negativity: u;; >0 and z; 2 0.
Constraint Types: =x3is 2, wy;is =1,

Formulation (2 € V):

Uiz T2 $2
T | §n | A2 | 2|0
Wi3 sz = le
20 20
o2 | ~th| G
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A.3 Two-Stage Stochastic Example

Consider 6 in (A.3) to be a discrete random variable having realizations 4 and
probabilitics P, for all s € {1,...5}. We will derive the subproblems for this multi-

point distribution.

min clz!+ ==

x;go

x4>0

st. xt: Az > B (A3)

x3: ANzl 4 ABZ? > P,

Stochastic Problem Description: For a multi-point distribution, the indices x2
and z? will be repeated for each instance of s. However, it is a modeling issue as to
whetler #! is repeated. The meaning of these constraints becomes ambiguous when
randem data are introduced. If we limit ourselves to linear formulations, we still have
the choice to model them cither as a single expected-value constraint, £, {4722} > b,
or as multiple absolute constraints A*'z2 > ¥, for all s.

Given the a priori assumption to keep the objective linear by using expected
values, the second case corresponds to Stochastic Linear Recourse. To keep things

simple we choose the expected-value constraint.

R=x'Ux!, C=z'Uz?

0 AR ... AP
A')l A22 bl .
A= : . ERR’(C, b= (b’) ERR, cl‘=(c1 CE)ER“C,
A2l A22

A= P,A%, & =P

Stochastic Communication Network Description: This example crosses D-W

and Benders Decomposition. First D-W is applied, then Benders is applied to the

bottom problem. This obviates the need for the special Cross-Splitting described
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previously. The communication network is defined for all s € {1,...,S}.

WV, A4) = ({1,2,8},{(12), (1), (1s), (s1), (25), (s2)}),

Ri=7x, Ry=x2Vze(l,...,S}, R,=x

G =z'UzlVz € {],...,5}, C=2a', C, =2}

T2 =down, Ty =up, T, =down, T, =up, 7T, =right, 7, =Ilecft.

In addition to nodes one and two, this network has one node for cach distribution
point. Each communicates to node 1 via up and down arcs, and with node 2 via left

and right arcs.

Stochastic Incidence Graph Description: Note that the nodes for x? and 22

are repeated for cach instance of s.
h=({o,7',75,8,2", 20}, {(02"), (023), (x's), (x'23), (wls), (x2'), (w5 23) ).

Stochastic Arc Index Sets: Nodes 1 and 2 communicate oniy objective informa-

tion as we saw previously in the Block Diagonal Example.

Ras=Ra= 7\'3, Cia=Cy = zl, C,=C, = xf.

Stochastic Partition Graphs: There are two partition graphs p; and p;. They

are ordered so that p, is before (i.c., the parent of) p,.
m = ({1,2,s},{(12),(21),(1s),(s1)}), Ry, =R, C, =C,

p2=({2,5},{(25),(s2)}), Rp =17}, C,=C.

The added variables associated with arcs (21) and (s1), which link the child partition
nodes {2,s} to the parent partition node {1}, will be indexed by the child partition

2.

Stochastic Subproblem (1 € A'): Node one is topmost and leftmost.
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Original Variables: =, € ®%, and z, € R,
Original Data: A; = (0 Al?), b =(b),andcT=( &2).

Incoming Arcs: Node one has S+ 1 incoming arcs (21) and (s1) and their
types are Ty) =up and 7,, =up for all s € {1,...,S}. They all connect the partition
graphs p; and p,.

Added Variables: 1,, € R%2, 0,, € R, Y € R, and ,; € R, The sources

of the incoming arcs arc in py. Therefore, I and 0 are subscripted by p,.

Added Data: 1isindexed by (0.,,$1), §p, is indexed by (0,,,1,), X1z is indexed
by (Y1, 15), X, is indexed by (¥a121p2)y —Ihz is indexed by (Y21,7,), and =1, is
indexed by (¥,1,21) for all s € {1,...,S). Note that § is subscripted by p,.

Non-negativity: I3 >0, !,; > 0 and z; is free.
Constraint Types: = is 2, ¥ is =, ¢,y is =, and 0,, is =.

Formulation (1 € /): This is a D-W Master problem to the implicit subprob-
lem defined on p;. It incorporates new columns in a synchronous manner based on a

pa-feasible point for a given value of (¥, ¥7).

Iy, ! Sy
m Ay | 2| b
¥ Xn -l | =
pa | X | =h | = Vs€{1,...,5)},
0y, | 37, =
20  free
o | 0 cr
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Stochastic Subproblem (2 € A): Node 2 is leftmost and not topmost.
Original Variables: x; € ®*2 and z, € X%.
Original Data: A; = (A1), b, =(5?), and cf = (0).

Incoming Arcs: There are S + 1 arcs entering node two and their types are

T2 = down and 7,3 = left. They all lie within pa.
Added Variables: wy; € R, v;z € R, \,; € K, 1,, € R, and y,; € KRR~
Added Data: 1y is indexed by (vi2,22), -0y is indexed by (v12, 8), 5y is
indexed by (vj2, wy2), another & is indexed by (o2, wy,), 1 is indexed by (o2, ts2), F2s
is indexed by (A,2,t,2), I1,, is indexed by (As2,¥42), and —1Iy, is indexed by (72, y,2).
Non-negativity: z; >0, and y,3, wy3, and {,; are {ree.

Constraint Types: ), is >, vj2 is 2, and =, is =.

Formulation (2 € N): This is a Benders Master program to the subproblems

defined over s. Each subproblem adds constraints independently of the others.

Tz Y2 Wiz $2
/\:2 fl!n 5’2. Z 0
vz | 9 b > | =0y
wp | Ay | =13, = | b

20 free free free
(o0} 0 0 621 1
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Stochastic Subproblem (s € N): Node s is neither topmost nor leftmost.
Original Variables: x, € R®* and z, € R%.
Originul Data: A, =(A%),b, =(0), and cf=(0).

Incoming ,ircs: Node s has two entering arcs (1s) and (2s) with types 7y, =

down, T;, = right.
Added Variables: w;, € R, v;, € R, wy, € R, and u,, € R.

Added Data: 4, is indexed by (v1ayZ4)s —0,, is indexed by (v14y34), S,y is
indexed by (vy,,wy,), 8,1 is indexed by (o,,w1,), Fa2 is indexed by (x,,u3,), —fs2
is indexed by (o,,us,), d,; is indexed by (w14, t2,), 2nd another d,; is indexed by

(Wisy 8s)-
Non-negativity: wu,, >0, z, 2 0, and w,, is free.

Constraint Types: vy, is >, 7, is 2, and w,, is =.

Formulation (s € V):

Uz, z, w, 3,
vy, )R b | 2 | —0a
x| §a2 | A 210
w1, Jn = Jn

20 20 free
o, | ta| O 3.1
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A.4 Dense Example

This final example demonstrates cross splitling on a dense matrix. The communi-
cation network has five nodes, one of which has an empty row index set. This is
a trick by which we can apply the cross splitting technique to the extent that cach
subproblem is based on « single cocfficient of the constraint matrix. Our starting

formulation is

min dzt + A==z
3;20
‘>0
P BT P 12,2 1 Ad
st xr Allzt 4 A2 > b, (A)

w2 Azl 4 A%2? > )2,
Dense Problem Description:
R=x='Ux?, C=2z'Uz?

AN AR B
/1:(/12l An)egzkxc’ b=(b2)egz7€’ cT=(c‘ c’)GR“‘C.

Dense Communication Network Description:

N =({1,2,3,4,5),

A = {(12),(21),(13),(31), (14), (41), (15), (51), (23), (32), (45), (54)})
Rl=0: R2=7rl’ R3=7r1» 'R'4=7"2) 'R5=W2)

Cl=$lU$2, Cg=xl, C3=.'l:2, C.|=2:l, cs=:z:2,

To=Ta=Tu=Ts=down, Ty =Ty =T, =T =up,
Ty = Tis = right, Top = Ty = left.

Dense Incidence Graph Description:
h = ({o,7',7%,s,2!,2%}, {(02"), (02?), (#'s), (='z"), (= =*), (x2s), (x?z!), (7*z%)}).
Dense Arc Index Sets:
Ru=Ra=17', Ry =Ry =n,

— | — —_a2 - I —
Cu-c'n—x, 013—031—-'51 CH—'C-H—:C: Cls=csl—$2-
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Dense Partition Graphs: There are three partition graphs py, pa, and py in the
communication network of this example. As determined by the ordering of the nodes,

p1 is the parent to both p; and py:

p=({1,2,3,4,5},{(12),(21),(13),(31), (14), (41), (15), (51)}),
R, =R, C, =C,
n=({234{(23),32)}), Ry ==, Cp=C,
pa=({4,5}, {(45),(59)}), Rp, ==, Cp, =C.
Therefore, the added variables associated with ares {21), (31), (41), and (51), which

link the child partition nodes {2,3,4,5} to the parent partition node {1}, will be
indexed by child partitions, namely p; and pj.

Dense Subproblem (1 € A): Node one is topmost and leftmost.
Original Variables: 1z, € R since the row index sct for node one is empty.
Original Data: cl=(c' ¢?).

Incoming Arcs: Node one has four entering arcs with sources in two different
child partitions. Arcs (21) and (31) are from p; and arcs (41) and (51) are from pj.
Their types are Tj2 = i3 = iy = Tis = up.

Added Variables: 2 € R, 3, € R, g € R, 5, € £, 0,, € R,
Ops € R, I, € R5r2, and [,; € REms,

Added Data: 1 is indexed by (&,,;), 1 is indexed by (0,,,51), §p, is indexed
by {0ry,1p,), Gps is indexed by (0py, 1), X1z is indexed by (Y1, l,), X1s is indexed
by (a1, 15, ), Xia is indexed by (P41, 1,), X1s is indexed by (s1, by, ), —T12 is indexed
by (¥21,21), —Is is indexed by (a1, 21), —J14 is indexed by (Pa,z1), and 15 is
indexed by (¥s1, ).




Ad. DENSE EXAMPLE

Non-negativity: {,, 20, 1,, >0, and z, is free.

119

Constraint Types: v, Y1, Y1, ¥s1, 0y, and 0,, arc all cqualities.

Formulation (1 € V):

MY
¥y
Ya
s
Op,
Op,

a,

ey by = 8
X2 -l 0
X -l | =10
Xy | =1 0
Xis | =1 s =10
9 1
7 I
20 20 free
0470 cl

Dense Subproblem (2 € /'): Node two is leftmost and not topmost.

Original Variables: #, € %2 and z, € .

Original Data: A = (A"), b = (4'), and T'=(0).

Incoming Arcs: There are two arcs entering this node, (12) and (32), and their

types are Ty = down, Tay = left. Arc (12) spans p, and p2 but it is down so no

explicit synchronization is necessary.

Added Variables: A3 € R, y;5 € R, ya2 € R%2, wy; € R, and ty2 €R.

Added Data: 1, is indexed by (vi2,23), =0y is indexed by (v12,53), 8y is
indexed by (vys,w12), &3 is indexed by (02,wy3), another 1 is indexed by {62, t3), Faa

is indexed by (Aaa, tay), [May is indexed by (Aaz,ya2), and —In, is indexed by (72, y32)-
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Non-negativity: zj, y3, w3, and 3, are all free.
Constraint Types: M\ is 2, vjp is 2, and x3 is =,

Formulation (2 € N):

T3 Y Wi iln 32
«\32 ﬂn '?23 _>. 0
viz | ¥ by > | =0y
%y | A2 | —In =1b

Jree free  free  free
(] 0 0 631 1

Dense Subproblem (3 € /): Node three is neither leftmost nor topmost.
Original Variables: =3 € R and z3 € 5.
Origina! Data: A; =(A"),b3=(0), and J=(0).

Incoming Arcs: There ar¢ two incoming arcs to node three, {13) and (23), and

their types are Tj3 = down and To3 = right.
Added Variables: v;3 € R, wy; € R, uy3 € R, and w3 € R.

Added Data: 4y, is indexed by (v13,23), =0 is indexed by (v13, 83), b3 is
indexed by (vy3,wa), &3 is indexed by (o3,wya), §az is indexed by (73, 1123), ~lx2
is indexed by (o3, u23), dy; is indexed by (w23, tz3), and another ds; is indexed by

(wns, 33)~
Non-negativity: uz; 2 0 z3 is free, and w3 is free.

Constraint Types: wv)3is 2, x5 is >, and wyy is =.
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Formulation (3 € V):

U3 T3 Wy 33
Ui vh {8 | 2] -0a
73| ¥ | As 210
Wa Jaz = Jsz
>0 free free
a3 —{32 0 331

Dense Subproblem (4 € A):  Similar to node two, this node is leftmost and not

topmost.
Original Variables: x, € 8%, z;€ R°.
Original Data: Ay =(A%), by = (), and ] =(0).

Incoming Arcs: There are two arcs entering node four, and their types are
T4 = down and Tgq = left.

Added Variables: X, € R%s, vy € R, ysi € R*%, wyy € R, and U5, € R.

Added Data: 1y, is indexed by (v, 24), —04 is indexed by (v, 84), &4 is
indexed by (v34, wie), &a1 is indexed by (o4, wy4), another 1 is indexed by (o4, ts4), F43

is indexed by (Asq, Is4), I, is indexed by (Asq,¥s¢), and =1L is indexed by (7, ys¢)-
Non-negativity: z, 20, and ys4, w4, and tgg are free.

Constraint Types: g is 2, vy is 2, and »q is =.
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Formulation (4 € N):

Ty Y4 Wi s $q
Asq I s | 210
v | 94 bu > | =0a
x| Ad | ~is = | b

>0 free [ree free
a |l 0] 0 |&y]| 1

Dense Subproblem (5 € /): Similar to node three, node five is ncither topmost

nor leftmiost.
Original Variables: x5 € R and 5 € R™.
Original Data: As = (A"?), bs=(0), and cf =(0).

Incoming Arcs: There are two incoming arcs to node three, (15) and (45), and

their types are Tys = down and Tgs = right.
Added Variables: v;s € R, wis € R, wys € R, and wys € R.

Added Data: s is indexed by (vis,zs), —fg, is indexed by (vis,3s), bsy is
indexed by (vis,wis), 551 is indexed by (o3, ws), Js4 is indexed by (w5, ws), —tsq

is indexed by (o, u4s), ds4 is indexed by (was, t4s), and another ds, is indexed by

(w45, 55)-

Non-negativity: u4 >0 z5 20, and wys is free.

Constraint Types: uv;sis >, x5 is 2, and wys is =.
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Formulation (5 € M):

Uys
xs

Wys

Oy

Ugs Ts Wy 3s
Yo | 8 | 2 | —0n

Usa | As 211

dsq = [ ds4

20 20 free

~in ! 0 | &,
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The Test Problems

For cach problem from the test suite, we have produced a bitmap pattern of the
nonzeroes in the constraint matrix. The application called SparseDisplay was used
with the consent of its creator Irv Lustig.

The three DIET problems were created by the author from an example in Chvatal
[Chv83). They are used primarily for test purposes and are quite small and dense.

The uext group of problems are from the standard netlib set.

GROWT7, GROW15, and GROW22 are of unknown nature and origin.

STAIR is also known as DINAMCO, and is an cconomic model of Mexico due to
Alan Manne [Man?7). ,

PILOT4 is an early version of a U.S. energy economic model by George Dantzig and
Wesley Winkler.

Finally, the next last group of test problems was first documented in [HL81a], and
their descriptions are paraphrased here. Further references are available in the cited

publication.

SC205 is an dynamic multisector development planning model.

SCAGRYT and SCAGR25 are an two versions (respectively 7-period and 25-period)

of a large dairy farm expansion planning model.
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SCRSS is a technological assessment model for the transition from fossil to renewable

energy resources in the U.S.
SCORPION is & dynamic energy flow model developed for the oil sector of France.

SCSD1, SCSD8, and SCSD8 arc sample problems in the minimal weight design

of multistage trusses under a single loading condition.

SCFXM1, SCFXM2, and SCFXM3 arc a production scheduling model (origin

unknown).

SCTAP1, SCTAP2, and SCTAP3 arc preblems in the optimization of dynamic

traflic flow where congestion is modelled explicitly in the flow equations.

o

Figure B.1: Bitmap of DIET2 (magnification = 332).

"

Figure B.2: Bitmap of DIET3 (magnification = 22).

T —

Figure B.3: Bitmap of DIET7 (magnification =

000)-
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Figure B.4: Bitmap of SG205 (magnification = 122).

Figure B.5: Bitmap of SCAGR7 (magpnification = 1322),
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Figure B.6:

Bitmap of SCORPION (magnification = 13%).
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Figure B.8: Bitmap of SCTAPI (magnification = 22,
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Figure B.9: Bitmap of SCFXMI (magnification = =%).
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Figure B.10: Bitmap of GROW?7 (magnification = 1322).
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Figure B.11: Bitmap of SCSDI1 (magnification = {3=).
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Figure B.13: Bitmap of SCRS8 (magnification = 3=
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Figure B.14: Bitmap of PILOT4 (magniﬁca.tion = fﬁﬁ
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Figure B.15: Bitmap of SCFXM2 (magnification = 3
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Figure B.16: Bitmap of GROW15 (magnification =

00
T005)-
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Figure B.17: Bitmap of SCSD6 (magnification = 22).
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Figure B.18: Bitmap of SCFXM3 (magnification = 233).

Figure B.19: Bitmap of SCTAP2 (magnification = ;25).
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Figure B.20: Bitmap of GROW22 (magnification = 33).
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Figure B.21: Bitmap of SCTAP3 (magnificaticn = =),

Figure B.22: Bitmap of SCSD8 (magnification = ;25.).




Appendix C

Tables

C.1 Constant Number of Subproblems

The first five tables are the supporting data for Figures 4.3, and 4.6-4.9, and the

follow arc descriptions of thecolumn headings.
NAME The name of a problem from our test suite.

n The number of nodes in the communication network.

P The number of IBM 3090/600E virtual processors.

ITN The total number of simplex method iterations executed on all subproblems.
SLV The total number of solves for all subproblems.

DCPU The cpu time spent for input, solution, and output (micro-seconds).
SCPU The cpu time spent for solution (micro-seconds).

Work The cpu time spent forming and soiving subproblems (micro-seconds).
SELP the solution elapsed time (micro-seconds).

OBJTRU the optimal objective value.

Rat the ratio of SCPU/SELP.

Eff the ratio of Rat/p.

Spd the speedup measured as the ratio of the smallest serial time using either MINOS
or DECOMP (p =1).

Spin the percentage of solution time not spent forming and solving subproblems;

(SCPU-Work)/SCPU.
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Name n p lhaDPiv Slv Topu Wik Cmeh Time Obijcetive Pwr  Eff Spd Spin
SCAGR? 01 93 10 1 402 224 228 230 -0,2331389824331D+07 099 9% 1.0 0%
SCAGR? o1 93 10 1407 232 2320 235 -0.2331389824331D407 099 99% 10 0%
SCAGR? 7 1 452 43 1388 B80G! 7869 6940 8125 .0,2351085468991D+07 097 97% 00 12%
SCAGR7 7 1 452 43 1B8R 8127 7937 699 8201 -0.2331035468991D407 097 91% 0.0 12%
SCAGRY 7 2 482 47 233 2058 1800 1410 1170 -9.2331341141112D+07 154 71% 02 22%
SCAGR? 7 2 625 50 341 2646 2386 1956 1484 -0.2331306455361D407 1.61 80% 0.2 18%
SCAGR7 T 2 442 39 3101 13103 12863 10868 7996 -0.2331006478981D+07 1.61 $0% 0.0 16%
SCAGR7? 7 3 562 41 306 2620 2316 1772 1278 -0.2330475061066D+Q7 181 60% 02 23%
SCAGR? 7 3 467 45 262 2395 2092 1536 1097 -0.2331057799207D+07 19N 6% 0.2 27%
SCAGR7 7 3 414 41 1750 9703 9403 6992 5791 -0.2331084665216D407 1.62 54% 0.0 26%
SCAGR? T 4 331 47 211 2241 1887 1222 1067 -0.2331282252049D+07 177 44% 0.2 ISR
SCAGR? 7 4 413 42 1717 12782 12437 6840 38930 -0.2222334978334D+07 139 35% 00 45%
SCAGR? 7 4 394 48 266 2723 2375 1492 1367 -0.2326167666179D+407 1.74 43% 0.2 317
SCORPION 0 1 139 6l I 1150 785 785 797 0.1878124822738D+04 098 98% 1.0 0%
SCORPION 0 1 139 61 1 1150 785 785 793 0,1878124822738D+04 099 9% 1.0 0%
SCORPION 6 1 280 126 114 2438 2027 1975 2072 0.1878124822738D+04 098 98% 04 3%
SCORPION 6 1 280 126 114 2437 2026 1974 2060 0,1878124822738D+04 098 98% 04 3%
SCORPION 6 2 279 125 130 4233 3774 2116 2337 0.1878124822738D+04 1.61 3B1% 03 %
SCORPION 6 2 280 126 114 4141 3680 2034 2269 0.1878124822738D+404 1.62 81% 0.3 45%
SCORPION 6 2 280 126 114 4179 3718 2058 2139 0.1878124822738D+404 174 87% 04 45%
SCORPION 6 3 278 124 132 4467 3959 2149 2334 0.1878124822738D+04 170 57% 03 46%
SCORPION 6 3 280 126 130 4496 3990 2143 2391 0.1878124322738D+04 1.67 56% 0.3 46%
SCORPION 6 3 280 126 116 4331 3824 2081 2216 O0.1878124822738D+04 173 S8% 04 46%
SCORPION 6 4 280 126 148 5297 4751 2221 3113 0.1878124822738D+04 1.53 3% 03 S3%
SCORPION 6 4 283 129 148 5019 4469 2234 2652 0.1878124822738D+04 1.69 42% 0.3 50%
SCORPION 6 4 276 125 192 5391 4839 2464 3015 O0.1878124822738D+04 1.60 40% 03 49%
SCAGR2S 0 1 475 116 1 4783 4343 4343 4382 .0,1475343306077D408 099 99% 1.0 0%
SCAGR2ZS 0 1 475 116 1 4768 4332 4332 4378 -0.1475343306077D+08 099 99% 1.0 0%
SCAGR2S 3 1 1317 71 1002 10190 9733 9343 9888 -0,7034688222719D+07 098 98% 04 4%
SCAGR2S 3 1 1317 71 1002 10247 9791 9396 9947 -0.7034688222719D+07 0.95 98% 04 47N
SCAGR2S 3 2 1113 72 1002 17059 16554 9711 9909 -0.7034689473487D407 1.67 B84% 04 41%
SCAGR2S 3 2 1120 72 1001 16475 15969 9619 9951 .0.7034689472408D+407 1.60 80% 0.4 40%
SCAGR2S 3 2 1128 71 1001 16486 15983 9671 10t11 -0.7034651433827D407 1.58 79% 0.4 39%
SCAGR2S 3 3 1009 76 1002 18167 17616 9699 10172 -0.7034651480718D+07 1.73 58% 0.4 45%
SCAGR25 3 3 1023 76 1001 14344 17762 9761 10447 -0,7034688227004D+07 1.70 57% 0.4 45%
SCAGR2S 3 3 1012 71 1001 18457 17874 9776 10180 -0,7034651444565D+G7 1.76 59% 04 45%
SCAGR2S 3 4 1024 76 1001 20497 19865 9819 11813 -0.7034651435092D+07 1.68 42% 0.4 514
SCAGR25 3 4 1058 71 1003 21407 20770 9979 12934 .0.7034651432544D+07 1.61 40% 0.3 52%
SCAGR2S 3 4 1034 69 1001 21037 2C410 9836 12466 -0.70346894741971D+07 164 41% 04 52%
SCTAP1 0 1 354 138 12292 1888 1888 1926 0.1412250000000D+04 098 98% 08 0%
SCTAP1 01 354 138 1 2301 1897 1897 1914 0.1412250000000D+04 099 99% 0.8 O
SCTAP1 10 1 513 30 163 1987 1531 1448 1576 0.1412250000000D+04 097 97% 1.0 5%
SCTAP1 10 1 513 30 163 1995 1539 1454 1577 0.1412250000000D+04 098 98% 1.0 6%
SCTAPI1 10 2 749 58 255 3009 2504 2197 1396 0.1412250000000D404 179 90% 1.1 12%
SCTAF1 10 2 627 29 204 2640 2130 183G 1228 0.1412250000000D+04 173 87% 13 14%
SCTAP1 10 2 589 31 232 2650 2184 1892 1219 0.1412250000000D+04 179 90% 1.3 13%
SCTAP1 10 3 640 38 212 2839 2291 1887 1086 0.1412250000000D+04 2.11 70% L5 18%
SCTAP1 10 3 645 33 231 2969 2417 2003 1078 C.1412250000000D+04 2.24 75% 1.5 17%
SCTAP1 10 3 751 43 378 3824 3274 2823 1490 0.1412220000000D+04 220 73% 1.1 14%
SCTAP! 10 4 558 30 237 2065 2362 1915 1029 0,1412250600000D+04 230 57% 15 19%
SCTAPL 10 4 719 34 331 3806 3207 2695 1433 (0.1412250000000D+404 224 56% )1 18%
SCTAP] 10 4 665 28 253 3653 3057 21361506 0.1312250000000D+04 1.90 48% 1.0 30%

Table C.2: Constant number of subproblems.
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Name n p  LnDPiv Slv Tepu Wik Cmch Time Objective Pwr  Eff Spd Spin
SCEXMI 0 1 416 154 1 2901 2468 2468 2482 0.1841675902835D+05 099 9% 1.0 0%
SCEXMI 0 1 416 154 1 2896 2466 2466 2483 0.1841675902835D+05 099 %% 1.0 0%
SCEXMI 4 1 2004 S18 313 6587 6107 5981 6254 0.1841675902835D:05 098 98% 04 2%
SCEXMI 4 1 2004 S18 313 6575 6095 35967 6175 0.1341675902835D+0S 099 9% 04 2%
SCEXMI 4 2 2023 505 332 11005 10475 6246 6191 0.1841675902835D+405 1.69 85% 04 40%
SCEXMI 4 2 2016 S10 324 10947 10415 6189 6193 0.1841675002835D405 1.68 84% 04 41%
SCEXM1 4 2 2031 513 356 11299 10765 6410 6223 0.1841675902835D405 173 §6% 04 0%
SCFXM1 4 3 2374 571 422 13956 13379 7585 7496 0.1841675902835D405 178 59% 03 43%
SCFXM1 4 3 2011 508 362 11872 11299 6409 6379 0.1841675902835D+405 177 59% 04 43%
SCFXM1 4 3 1972 500 340 11636 11062 6163 6339 0.1841675902835D+05 175 58% 04 4%
SCEXMI 4 4 2265 527 413 14509 13890 7234 8093 0.15841675902835D+05 172 43% 03 48%
SCEXM1 4 4 1975 491 354 12547 11922 6308 7089 O0.1841675902835D+05 1.68 42% 04 47%
SCEXM1 4 4 1486 403 282 9702 9079 4774 S150 0.1845102437697D)405 175 44% 05 47%
GROW? 01 190 118 1 1477 1099 1099 1115 04778281181471D408 099 W% 08 0%
GROW? 01 190 18 1 1488 1101 1101 1111 -0.4778781181471D+08 099 9% 08 0%
GROW? 7 1 185 2 97 12890 867 814 593 -0.4778781181471D408 097 97% 1.0 6%
GROW? 7 1 185 2 97 1300 877 321 901 .0.4778781181471D408 097 91% 1.0 6%
GROW? 7 2 208 2 144 1804 1331 1110 766 -047787811B1471D408 124 87% 1.2 17%
GROW?7 7 2 218 1 115 1688 1212 987 710 -0.4778781181471D+08 1,71 85% 13 19%
GROW? 7 2 N9 2 74 122 748 583 458 -0.4778781181471D408 163 82% 1.9 2%
GROW? 7 3 208 2 163 2074 1557 1217 800 -0.4778781181471D408 195 65% L1 22%
GROW? 7 3 210 2 167 2170 1652 1264 861 -0.4778781181471D408 192 64% 1.0 23%
GROW? 7 3 214 3 183 2228 1708 1352 890 -0.4778780861421D408 192 64% 1.0 21%
GROW7 7 4 200 2 170 2276 177 1210 896 -0.4778781181471D+08 192 48% 1.0 26%
GROW? 7 4 215 2 170 2203 1640 1293 796 -0.4778781181471D408 2.06 $52% 1.1 21%
GROW? 7 4 195 2 166 2417 1854 1228 1091 -0.4778781181471D408 170 42% 0.8 34%
SCSD1 01 206 182 1 1383 903 903 909 0.86663666743331D+01 099 % 1.0 0%
SCSD1 0 1 206 182 1 1331 899 899 908 0.8666666674333D401 099 %% 1.0 O
SCsSD1 3 1 857 653 31 2430 1901 1882 1922 0.8666666674650D+01 099 9% 05 1%
SCSD1 3 1 857 653 31 2430 1897 1878 1920 0.8666666674650D+01 099 9% 05 1%
SCSD1 3 2 935 657 49 3272 2689 2101 1438 0.8666666674333D+01 187 93% 0.6 22%
SCSD1 3 2 961 679 S1 3329 2743 2164 1458 0.8666666674333D+01 188 % 06 21%
SCSD1 3 2 948 671 53 3330 2747 2137 1462 0.8666666674334D+01 188 94% 0.6 22%
SCSD! 3 3 677 517 25 3001 2374 1476 1127 0.8666666674333D401 2.11 70% 0.8 3I8%
SCsD1 3 3 819 628 60 3803 3178 1973 1496 0.8666666674313D+01 2,12 71% 0.6 3I8%
SCSD1 3 3 1060 771 62 4383 3757 2442 1723 0.8666666674334D+01 2.18 73% 0.5 35%
SCSD1 3 4 1032 744 73 4382 3715 2419 1561 0.8666666674333D+01 238 59% 0.6 35%
SCSD1 3 4 963 713 56 4352 3682 2230 1741 0.8666666674333D+01 2.11 53% 0.5 39%
SCSD! J 4 589 438 42 2914 2241 1390 1045 0.8666666674333D+01 2.14 S54% 0.9 3I8%
STAIR 0 1 473 36 1 6728 6196 6196 6271 -0.2512669511930D+03 099 9% 0.5 0%
STAIR 01 4713 36 1 6693 6166 6166 6224 -0.2512669511930D+03 0.99 9% 0.5 0%
STAIR 6 1 240 12 286 3870 3292 3175 3360 -0.2087999900000D+03 098 98% 1.0 4%
STAIR 6 1 240 12 286 3914 3333 3215 3403 -0.2087999900000D+03 098 98% 1.0 4%
STAIR 6 2 228 12 301 6542 5909 3424 3453 -0.2087999900000D+03 1.71 86% 1.0 42%
STAIR 6 2 229 12 292 6525 5896 3370 3508 -0.2087999900000D+03 1.68 84% 1.0 43%
STAIR 6 2 232 12 291 6484 5851 3364 3511 -0.208799990003CD+403 1.67 83% 1.0 43%
STAIR 6 3 216 12 294 6983 6310 3386 3710 -0.2087999900000D+03 1.70 57% 09 46%
STAIR 6 3 228 12 288 7066 6393 3310 3723 .0.2087999900000D+03 1.72 Si% 09 48%
STAIR 6 3 214 12 294 7204 6531 3385 3730 -0.2087999900000D+03 175 58% 0.9 48%
STAIR 6 4 214 12 290 7752 7023 3376 4035 -0.20879999G0000D+03 1.74 44% 0.8 52%
STAIR 6 4 214 12 289 7484 6761 3362 3808 -0.2087999900000D+03 1.78 44% 0.9 S0%
STAIR 6 4 214 12 287 7701 6977 3329 40R3 .0.2087999900000D+03 171 43% 0.8 S52%

Table C.3: Constant number of subproblems.
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Name n p LnDPiv Slv Tepu Wik Coch Time Objective Pwr  Eff Spd Spin
SCRSE 0 1 86l 319 1 9207 8507 8507 8636 0.9042969538008D+03 098 98% 03 0%
SCRS8 0 1 861 2319 1 9211 8511 8511 8585 0.5042969538008D+03 0.99 99% 03 0%
SCRSH 7 1 823 235 99 3330 2555 2499 2595 0.9042969538C08D+03 098 98% 1.0 2%
SCRS8 7 1 823 235 99 3316 2544 2490 2583 0.9012969538008D+03 098 98% 1.0 2%
SCRSS 7 2 788 232 121 4766 3934 2644 2182 0.9042969535008D+03 180 90% 1.2 33
SCRSS 7 2 7 231 130 4720 3893 2615 2116 0.9042969535008D+03 184 92% 1.2 33
SCRS8 7 2 801 233 118 4680 3857 2568 2122 0.9012069538008D+03 182 91% 1.2 33
SCRS8 7 3 805 234 143 5047 4180 2759 2123 0.9042969538008D403 197 66% 1.2 344
SCRSS 7 3 790 233 144 5103 4225 2751 2103 0.9012969538008D+403 201 67% 1.2
SCRS8 7 3 799 234 126 4911 4042 2615 2078 0.90429695380081D403 195 65% 1.2
SCRS8 7 4 806 235 155 5512 4590 2889 2156 0.9012969538008D+03 213 53% 1.2
SCRSS 7 4 806 234 157 53719 4465 2856 2138 0.9042969538008D+03 209 S52% 1.2
SCRS8 7 4 807 235 148 5510 4594 2850 2244 0.9042969538008D:03 2.05 S51% 1.2
PILOITY 0 1 3730 1111 1 51213 50417 50417 51028 -0.2581016628137D+04 099 99% 0.3
PILOTH 0 1 3730 NN 1 51321 50535 50535 51127 .0.2581016428137D+0% 099 99% 0.3
PILOTY 4 1 2542 178 420 16777 15951 13636 16217 -0.7319905016480D+12 098 98% 1.0
PILOTY 4 1 2542 178 420 16807 15950 15663 16596 -0.7319905016480D+12 096 96% 1.0
PILOTH 4 2 3084 1168 407 NNNNN NANNN 38612 90094 -0.4643218961124D+15 186 93% 0.2
PILOTY 4 2 2345 179 423 29526 28616 15825 16272 -0,7319896083688D+12 1,76 88% 1.0
PILOTY 4 2 467 161 58 5701 4788 3268 2659 -0.3550972527810D+12 1.80 %0% 6.1
PILOTH 4 3 829 177 154 12601 11676 6378 6009 -0.1349535969926D+15 194 65% 2.7
PILOTY 4 3 2334 177 422 32360 31379 16217 17092 -0.7319897177463D+12 1.84 61% 1.0
PILOT4 4 3 2334 177 422 31835 30884 16064 17392 -0.7319897177463D+12 1,78 59% 0.9
PILOT4 4 4 455 161 61 6599 5583 3321 2564 -0.1704946512274D+13 218 S4% 6.3
PILOT4 4 4 2329 175 422 33517 32501 16089 18072 -0.7168499466778D+12 1.80 45% 09
PILOTY 4 4 455 161 S8 6778 5801 3323 2979 .0.3026879763031D+13 1.95 49% 5.5
SCrXM2 0 1 833 292 110257 943V 9439 11558 0.3666026156500D+05 0.82 82% 0.8
SCEXM2 01 833 292 110214 9407 9407 9511 0.3666026156500D405 099 99% 1.0
SCEXM2 8 1 5789 991 678 16627 15752 15423 16273 0.3666029249815D+05 097 97% 0.6
SCEXM2 8 1 5789 991 678 16574 15705 15376 15951 0.3666029249815D+05 098 98% 0.6
SCEXM2 8 2 6220 1062 856 19118 18191 17652 9802 0.3666026466566D+05 1.86 93% 1.0
SCFXM2 8 2 6054 1071 814 18534 17603 17083 9117 0.3666026790764D+05 193 97% 1.0
SCEXM2 8§ 2 6460 1157 930 20319 19397 18459 10017 0.3666026156500D+05 194 97% 0.9
SCEXM2 8 3 5976 1043 927 20953 19983 17757 7807 0.3666026378162D+05 256 85% 1.2
SCEXM2 8 3 6024 1015 871 20797 1981¢ 17550 7396 0.3666028795628D+05 2.68 89% 1.3
SCEXM2 8 3 6546 1217 1234 25213 24241 20509 9325 0.3666026156500D+05 2.60 87% 1.0
SCIFXM2 8 4 5514 1053 1029 22702 21678 17861 8211 0.3666026167255D+05 2.64 66% 1.2
SCFXM2 8 4 5443 1052 1000 22950 21928 17641 7702 0.3666027096909D+05 285 71% 1.2
SCEXM2 8 4 4862 945 858 20527 19471 15608 7469 0.3690368120357D4+05 2.61 65% 1.3
GROWI1S 0 1 539 40 1 6597 5869 5869 5925 -0.1068709412936D409 099 99% 0.5
GROWI15 01 539 40 1 6709 5979 5979 6060 -0.1068709412936D+09 099 99% 0.5
GROWI5S 15 1 589 1 307 3610 2810 2653 2890 .0.1068709412936D+09 097 97% 1.0
GROWIS 15 1 589 1 307 3591 2796 2639 2879 -0.1068709412936D+09 097 97% 1.0
GROWIS 15 2 899 8 644 6600 5754 5104 3217-0.1068709412936D+09 179 89% 09
GROWIS 15 2 1169 7 328 5232 4385 3904 2414 -0.1068709412936D+09 1.82 91% 1.2
GROWIS 15 2 959 6 411 5212 4363 23847 2419 -0,1068709412936D+09 180 90% 1.2
GROWIS 15 3 720 2 363 4674 3783 3234 1711 .0.1068709412936D+09 221 74% 1.7
GROWIS 15 3 1073 1 4790 31369 30477 26108 14349 -0.1068709412936D+09 212 71% 0.2
GROWIS 15 3 1263 6 716 8018 7127 6244 2998 -0.1068709412936D+09 238 79% 1.0
GROWIS 15 4 944 4 680 7661 6723 5618 2629 -0.1068709412936D+09 2.56 64% 1.1
GROWIS 15 4 1100 4 498 6319 5385 4707 2165 -0.1068709412936D+09 249 62% 1.3
GROWIS 1S 4 1066 3 499 6623 S689 4801 2280 -0.1068709412036D+09 2.50 62% 13

Table C.4: Constant number of subproblems.
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Name n p lnDPiv Slv Tepu Wik Cmch Time Objcctive Pwr  Eff Spd Spin
SCSLo 0 1 520 356 1 3214 2389 2339 2409 Q.5050000007714D+02 099 99% 1.0 0%
SCSDé 0 1 520 356 1 32090 2386 2386 2435 0.5050000007714D+02 098 98% 1.0 0%
SCSD6 7 1 2050 1273 107 3806 2913 2858 2960 0.5050000007576D402 098 98% 0.8 2%
SCSh6 7 1 2050 1273 107 3831 2933 2877 2983 0.5050000007576D+02 098 98% 0.8 2%
SCSD6 7 2 2379 1480 137 4918 3970 3494 2101 0.5050000008356D+02 189 94% L1 12
SCSh6 7 2 2051 1265 111 4354 3407 2944 1813 0.5050000007375D+02 1.88 94% 13 14
SCSD6 7 2 1933 1226 89 4085 3139 2676 1659 0.5050000008402D+402 189 95% 1.5 1§
SCSD6 7 3 2329 1450 167 5196 4206 3553 1718 0.5050000003919D+02 245 82% 14 16
SCSD6 7 3 2467 1583 174 5298 4304 3759 1735 0.5050000008056D+02 248 83% 14 13¢
SCSD6 73 2 1625 162 S558 4564 3934 1849 0.5050000006985D+02 247 82% 13 14
SCSh6 7 4 2425 1517 166 5848 4815 3697 2012 0.5050000007355D402 239 60% 1.2 23
SCSN6 7 4 2350 1494 230 5957 4918 4018 1822 0.5050000007633D+02 270 67% 1.2 18%
SCSh6 7 4 2336 1480 217 S653 4619 3IRIS 1727 0.5050000007620D+402 2.67 67% 1.4 1%
SCEXMI 0 1 1252 422 1 21815 20926 20626 20591 0.5490125454975D46G5 099 W% 1.0 04
SCEXM3 0 1 1252 422 1 21955 20818 20818 23007 0.5490125454975D+05 090 90% 09 0%
SCEXM3 12 1 11525 1805 1282 34435 33172 32565 33854 0.5490130154424D+05 098 98% 0.6 2%
SCEXM3 12 1 11525 1805 1282 34661 33379 32762 35018 0.5490130154424D+05 095 95% 06 2%
SCEXM3 12 2 10285 1659 1296 32072 30749 30072 15776 0.5490128935557D+05 195 97% 13 2%
SCEXM3 12 2 13711 2106 1760 43173 41838 40905 22778 0.5490131599008D+05 1.84 92% 09 2%
SCEXM3 12 2 10019 1610 12580 31560 30234 29336 17237 0.5490131076105D+0S 1,75 88% 1.2 3%
SCEXM3 12 3 10675 1715 1544 35177 33810 32859 11796 0.5490130150784D+05 287 96% 1.8 3%
SCEXM3 12 3 9672 1546 1335 31359 30002 29092 10542 0.5490128591737D405 285 95% 20 3%
SCEXM3 12 3 9399 1644 1339 30203 28846 28031 10289 0.5490129861552D+05 280 93% 2.0 3%
SCEXM3 12 4 10424 1700 1711 37914 36495 33695 10347 0.5490133831142D+05 3.53 88% 20 B8H
SCFXM3 12 4 10504 1729 1864 38979 37546 34656 11305 0.5490128849170D+05 332 83% 1.8 8H
SCFXM3 12 4 9153 1558 1630 33829 32415 30G18 9119 0.5490127267199D+405 3.55 89% 2.3 7%
SCTAP2 0 1 1529 81 1 30211 28847 28847 20096 0.1724807142857D+0¢ 099 99% 0.1 0%
SCTAP2 0 1 1529 31N 1 30170 28802 28802 28994 0.1724807142857D+0% 099 99% 0.1 0%
SCTAR2 10 1 809 126 154 5252 3778 3695 3844 0.1724807142857D+40% 098 98% 1.0 2%
SCTAP2 10 1 809 126 154 5239 3766 3687 3823 0.1724807142857D+04 099 99% 1.0 2%
SCTAP2 10 2 885 115 217 6747 5220 4558 2760 0.1724807142857[1+04 189 95% 1.4 13
SCTAP2 10 2 985 135 274 7541 5996 5329 3191 0.1724807142857D+04 188 94% 1.2 1}
SCTAP2 10 2 97 111 193 6588 5058 4411 2715 0.1724807142857D404 186 93% 14 13
SCTAP2 10 3 1053 118 266 7943 6366 5594 2511 0.1724807142857D+04 254 85% 1.5 12
SCTAP2 10 3 974 111 218 7151 5576 4815 2246 0.1724807142857D+04 2248 83% 17 13
SCTAP2 10 3 917 126 253 7304 5734 5023 2326 0.1724807142857D404 247 82% 1.6 12
SCIAP 10 4 972 116 276 7889 6263 5369 2134 0.1724807142857D+04 293 73% 1.8 14
SCTAP2 10 4 982 126 211 8029 6410 5446 2326 0.1724807142857D+0% 276 69% 1.6 1S5
SCTAP2 10 4 1082 142 321 £979 7350 63290 2581 0.1724807142857D+04 285 71% 1.5 14
GROW22 01 921 10 1 18647 1I611 17611 17772 -0,1608343364826D+09Y 099 99% 03 0%
GROW22 01 921 100 1 18728 17687 17687 17830 -0.160G8343364826D+09 099 99% 03 O
GROW22 22 1 B82S 2 519 5729 4597 4341 4706 -0.1608343364826D+09 098 98% 10 6
GROW22 22 1 825 2 519 5738 4611 4350 4718 -0.1608343364826D+09 098 98% 1.0 6
GROW22 22 2 883 0 659 7114 5933 5207 3466 -0.1608343364826D+09 171 86% 1.4 12
GROW22 22 2 929 1 742 77153 6572 5769 3725 -0.1608343364826D409 1,76 88% 13 12
GROW22 22 2 952 2 743 7961 6779 5957 4008 -0.1608343364825D+09 1.69 85% 1.2 12
GROW22 22 3 917 3 727 8049 6827 5720 3242 -0.1603343364826D+09 211 70% 1.5 16
GROW22 22 3 1134 1 573 7538 6311 5426 2869 -0.1608343364826D+09 220 73% 1.6 14
GROW22 22 3 772 3 726 17959 6728 5482 3378 -0.1608342364826D409 199 66% 1.4 19
GROW22 22 4 1104 0 626 7885 6611 5668 2678 -0.1608343364826D+09 247 62% 18 14
GROW22 22 4 939 3 592 7482 6207 5187 2508 -0.1608343364826D+09 2.47 62% 1.9 16
GROW22 22 4 961 0 560 7218 5946 5067 2280 -0.1608343364R826D+09 261 65% 2.1 15

Table C.5: Constant number of subproblems.
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Name n p InDBiv Slv Tepu Wik Cmeh Time Objcctive Pwr  Eff Spd Spin
SCIAP3 0 1 1696 1012 1 43964 42160 42160 42570 0.1424000000000D+04 099 9% 0.1 0
SCTAP3 0 1 169 1012 1 43929 42119 42119 42423  0.1424000000000D+04 099 99% 0.1 O
SCTAM3 10 1 677 87 134 5953 4008 3937 4065 0.1424000000000D+04 099 9% 1.0 2
SCrar3 10 1 677 87 134 5939 3997 3928 4054 0.1424000000000D+04 099 9% 1.0 2
SCTAP3 10 2 707 77 144 6892 4907 4131 2601 0.1424000000000D+04 189 94% 1.6 16
SCTAP3 10 2 750 82 143 7075 S084 4299 2724 0.1424000000000D+04 1.87 93% 1.5 1§
SCTAP3 10 2 759 82 140 7065 5073 4302 2667 0.1424000000000D+04 190 95% 15 15
SCrAP3 10 3 742 81 223 8129 6093 5108 2535 0.1424000000000D404 240 80% 1.6 16
SCTAP3 10 2 769 85 221 8264 6224 5275 2527 0.1424000000000D+04 246 82% 1.6 1S
SCTrAP3 10 3 756 86 239 8357 6315 5354 2574 0.1424000000000D+04 245 82% 1.6 1S
SCTAP3 10 4 750 85 259 9322 7241 5556 2960 0.1424000000000D+04 2.45 61% 1.4 23
SCTAP3 4 77 8315 4948 2376  0.1424000000000D+04 2.62

SCTAP3 4 744 5356 2291 0.1424000000000D+04 R
SCSDS 01 0.9049999999255D+0. 3
$CSD8 01 N4 817 1 15699 14075 14075 0.9049999999255D+403 099 9% 0.7
SCSD8 7 1 4381 3174 102 11450 9709 9457 9802 0.9049999999255D+03 099 9%% 1.0
SCSD8 T 1 4381 3174 102 11463 9713 9661 9831 0.9049999999255D+03 0.99 99% 1.0
SCsD3 7 2 4149 3055 150 13104 11303 9322 $870 0.9049999997255D+03 193 9%6% 1.7
SCSDS T 2 4326 3173 150 13676 11881 9962 6140 0.9049999999255D+03 194 97% 1.6
SCsng 7 2 4210 3099 150 13310 11516 9525 5971 0.9049999999255D+03 193 96% 1.6
SCspR 7 3 S091 3702 157 15742 13902 11655 5524 0.9049999999255D+03 2.52 84% 1.8
SCSD8 7 3 5105 3756 204 16086 14250 11997 5675 0.9049999999254D+03 2.51 84% 1.7
SCSDS 7 3 3840 2816 176 13444 11605 9228 4832 0.9049999999454D+03 240 80% 2.0
SCSD§ T 4 4443 3323 183 14744 12865 10388 4584 0.9045999999257D+03 281 70% 2.1
SCSD8 7 4 5638 4068 215 17828 15936 13352 5344 0.9049999999255D+03 298 75% 1.8
SCSN8 7 4 5022 3707 251 17046 15163 12069 S508  0.9049999999254D+03 2.75 69% 1.8 2

Table C.6: Constant number of subproblems.
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o~

C.2 Varying the Number of Subproblems

The next three tables support Figures 4.10 - 4.12 and following arc descriptions of

their column headings.
NAME The name of a problem from our test suite.
N The number of subproblems.

DECOMP/1 The amount of work, time, or speedup required to solve SCSD§/N
with one processor.

DECOMP/2 The amount of work, time, or specdup required to solve SCSD8/N
with two processors.

DECOMP/3 The amount of work, time, or speedup required to solve SCSDS/N
with three processors.

DECOMP/4 The amount of work, time, or speedup required to solve SCSD§/N
with four processors.

Work is in CPU seconds, Time is in seconds, and Speedup is dimensionless.

Name | N] DECOMPIT | DECOMP:Z | DECOMP | DECOMPA |
SCSD3 14.1 209 237 233
4 116 17.1 18.3 1.1
6109 14,0 16.8 159
8| 123 14.8 21.7 203
100 9.7 12.2 1.5 13.7
] 101 122 114 154
4 94 13.8 16.5 14.2
16| 145 12.8 13.6 145
18] 115 144 13.6 182
20 15.8 16.7 12.8 147
22l 143 164 18.1 16.5
24] 147 18.1 15.5 18.4
26 I8.1 22.5 24 159
28] 213 22,0 17.1 20.8
300 203 264 209 30.7
32 24.1 218 26.7 19.8
4 06 25.6 263 238 |
36 199 2.5 28.5 252
3B 247 30.6 21,0 21.1

Table C.7: Work for a varying number of subproblems.




C.2. VARYING THE NUMBER OF SUBPROBLEMS

Name | N[ DECOMP/T [ DECOMP2 | DECOMP73 | DECOMP/3

SCSD8 2 13.5 1.7 85 8.1
4 10.9 8.3 6.1 3.6

6 10.3 6.8 5.8 4.6

8 117 72 7.1 53

10 9.1 5.8 3.9 34

12 9.4 5.8 3.7 3.8

14 8.7 6.6 5.4 3.1

16 13.9 6.1 44 3.6

18 10.9 6.9 4.3 4.6

20 15.2 8.0 58 3.6

22 13.7 19 5.9 4.0

24 140 8.8 S0 4.5

26 174 11.0 7.3 3.9

28 20.7 10.7 5.6 3.1

30 19.6 129 6.8 1.3

32 234 10.7 8.8 5.0

34 22.0 12,8 86 5.9

36 19.3 11.0 9.3 6.2

aR 240 15,1 6.8 32

Table C.8: Time for a varying number of subproblems.

Name | NT DECOMP/T] DECOMPR2 | DECOMPR| DECOMPI

SCSD8 2 1.0 12 1.6 17
4 1.0 13 1.8 20

6 1.0 1.5 1.8 2.2

8 1.0 1.6 1.6 2.2

10 1.0 1.6 23 21

12 1.0 1.6 2.5 2.5

14 1.0 1.3 1.6 24

16 1.0 2.3 3.2 39

18 1.0 1.6 2.5 24

20 1.0 1.9 2.6 4.2

22 1.0 17 23 34

24 1.0 1.6 2.8 3.1

26 1.0 1.6 24 4.5

28 1.0 1.9 3.7 4.1

30 1.0 1.5 2.9 2.6

32 10 22 21 4.7

34 1.0 L8 2.5 37

36 1.0 1.8 2.1 3.1

KL 1.0 1.6 35 46

Table C.9: Speedup for a varying number of subproblems.
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C.3 Varying the Number of Processors

The last table supports Figures 4.13 and 4.14, and following are descriptions of their
column headings.

Problem Name The format is Name/N/p, where Name is the name of the test
problem, N is the number of subproblems, and p is the number of processors.

Total Iterations The simplex method iterations done on all subproblems.

Degen Iterations The number of degenerate simplex iterations done on all sub-
problems.

Total Solves The number of subproblems solved.

Total Work The number of CPU seconds used for the entire run.

Power The cffective number of CPUs applied to the problem: Work/Time.
Work The number of CPU seconds used to form and solve the subproblems.
Time The Elapsed seconds needed to form and solve the subproblems.

Obective Value The objective value obtained for the overall LP problem.

Problem Total Degen Total Total Objective
Name Itns. Itns. Solves Work Power Work Time Value
SCID3A0/T | 14193 [ 3932 2793] 311 1.0 28. 28.0] 9.0499999992489E+02
SCSD8/392117670 | 5100f 34573 39.7 20] 358] 17.9] 9.0499999998733E+02
SCSD8/39/3 | 14598 | 4234 2626 31.7 29 278 9.4] 9.0500000005023E+02
SCSD8/39/4 | 16402 | 4849] 3375] 394 40] 346 8.7] 9.0499999989715E+C2
SCSD8/39/5 § 14997 | 4624 3106] 37.1 48] 319 6.6] 9.0499999993473E402
SCSD8/39%/0 | 9967 | 3647} 1861] 259 5.6] 209 3.7} 9.0499999991451E+02
SCSD839/7 | 16721 1 49881 31211 40.5 6.5] 34.6 5.31 9.0499999992473E+02

Table C.10: Power, Work and Time for a varying number of processors.
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